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ABSTRACT: Evaluation of geotechnical parameters on a project site is a necessary step in geotechnical 
engineering. However, due to the inherent variability of soil properties and the lack of data, many 
unavoidable uncertainties arise during a site-specific geotechnical characterization. This challenging task 
can be addressed under the Bayesian framework. The aim of this paper is to apply the Bayesian approach 
to a reference example of friction angle evaluation in sand, using the Bayesian Equivalent Sample Toolkit 
(BEST). BEST is an Excel VBA program for probabilistic characterization of geotechnical properties. In 
particular, in this study the statistical analysis has been performed using CPT tests from reference field 
studies. The results obtained for one case study involving CPT are discussed.

Within geotechnics, Wang & Cao (2013) developed 
an equivalent sample method for Bayesian analy-
sis in which different components of epistemic 
uncertainty may be treated. To do so the limited 
data acquired during site-specific investigation is 
combined with the so called prior knowledge, rep-
resenting the information about the geotechnical 
property before any observation data are collected. 
The integrated knowledge (posterior knowledge), is 
then used to obtain a precise statistical description 
of the property by means of a numerical procedure 
known as Markov Chain Monte Carlo simula-
tion. In order to avoid mathematical and statisti-
cal hurdles, Wang et al. (2016) developed an Excel 
toolkit, called Bayesian Equivalent Samples Toolkit 
(BEST), to evaluate the probability distribution 
and nominal value of the design parameters. The 
aim of this paper is to perform a statistical analysis, 
through BEST, of one design example, in which the 
observation data consist of four CPT tests.

2 UNCERTAINTY MODELLING

2.1 Inherent variability

Consider for instance a sand deposit, and its 
friction angle φ′ as the design parameter XD. 
According to Wang et al. (2015), which reports the 
probability distribution of different geotechnical 
parameters, inherent variability of friction angle 

1 INTRODUCTION

A major application of CPTu is in the evaluation 
of material properties for geotechnical units identi-
fied within a site. The description of a given unit 
property (e.g. the friction angle of a sand, φ′) may 
be done in deterministic terms (a single value, even-
tually varying with depth) or in probabilistic terms. 
The latter approach is increasingly important, as 
the treatment of material uncertainties in geotech-
nical design becomes more formalized (e.g. in the 
selection of characteristic values for partial factor 
limit state design or in the application of direct 
reliability evaluation methods). The variability of 
geological processes is one fundamental compo-
nent of a variation of geotechnical properties. Such 
variability is known in literature as inherent vari-
ability or “aleatory uncertainty”. This irreducible 
component is increased by “epistemic uncertainty”, 
comprising factors such as statistical error (lack 
of data), measurement error (inadequate equip-
ment and/or operator errors), and transformation 
uncertainties (Phoon & Kulhawy 1999a). The lat-
ter component is particularly important for CPTu 
data, which may be directly used in design, but 
most frequently requires transformation models to 
obtain derived values. Within this context, Bayesian 
updating is an emerging framework (Gelman et al. 
2013) well suited to handle the problem of material 
property evaluation under uncertainty conditions. 

CPT2018_Book.indb   221CPT2018_Book.indb   221 5/3/2018   12:08:32 PM5/3/2018   12:08:32 PM



222

can be modelled using a normal random variable 
with a mean μ and standard deviation σ:

′ + ⋅φ μ′ = σ z;  (1)

where z is a standard gaussian random variable. 
Note that the spatial variability of the friction 
angle is not considered herein.

2.2 Transformation model

In this study a linear semi-log regression, devel-
oped by Kulhawy & Mayne (1990), between φ′ and 
the normalized cone tip resistance q is considered 
(Fig. 1).

The regression equation is defined as:

ε′φ + + ;εεφφ b  (2)

where q is the normalized cone tip resistance 
q  =  (qc/pa)/(σ′v0/pa)0.5, which is a function of  the 
effective stress σ’v0 and the atmospheric pressure 
pa. The use of  a stress-normalized regression 
like this implies a certain assumption about the 
effect of  stress increases with depth on the data. 
The regression coefficients have values a = 0.209, 
b = −3.684, while the transformation error, ε, is a 
Gaussian random variable defined by a zero mean 
and a standard deviation σm = 0.586. It is worth 
noting that Equation 2 considers the transforma-
tion uncertainty of  the regression model, through 
the ε term. Replacing Equation 1  in Equation 2 
leads to:

ξ μ σ σ ε+)μ + ;εεμμμ a+) σσ mσ  (3)

Thus, the normalized observation data ξ are 
treated as a Gaussian random variable with mean 

(aμ + b) and standard deviation √((aσ)2 + σm
2). 

The expression obtained makes clear that inherent 
variability (z) is independent from transformation 
uncertainty (ε).

3 BAYESIAN FRAMEWORK

A key feature of Bayesian statistical approach 
is the integration of the prior knowledge of the 
model parameters (i.e. μ, σ of  φ′) with the obser-
vation data (i.e. CPT), to obtain the posterior 
knowledge of the model parameters. Indeed, the 
latter can be expressed through Bayes theorem as 
(Cao & Wang 2013):

prior Data( , | ,Data ) (KP | , ) (P , );μ σ, μ σ,, )) μ σ, ), )
 (4)

where:

− Data = ξi with i = 1, 2 … nc, are the observation 
data obtained during the site investigation in the 
sand layer;

− P (μ,  σ) reflects the prior distribution of the 
model parameters μ and σ of  XD (φ′), without 
considering the observation data;

− P (Data| μ,σ) is the so called likelihood function, 
which expressed the probability density function 
(PDF) of the observation data, for a given set of 
μ and σ;

− K  =  [∫μ,σ P(Data| μ,σ) P(μ,σ)dμdσ]−1 represents 
the normalizing constant which does not depend 
on μ and σ;

− P (μ,σ| Data,prior) is the update or posterior 
knowledge of the model parameters μ and σ of  
the design parameter XD (φ′).

Note that from now on P (μ,σ| Data,prior) will 
be denoted as P (μ,σ| Data).

3.1 Prior knowledge

Two different types of prior distribution of the 
model parameters can be considered in the Baye-
sian approach:

− non informative (i.e. uniform distribution);
− informative (i.e. histogram, triangular, conju-

gated distribution).

The former is considered when no prior infor-
mation on XD is available for the project site. In 
this case a rough estimation of  the prior knowl-
edge was obtained through a literature review 
(Phoon & Khulawy 1999a, Cabalar 2010, Sal-
gado et al. 2000, Naeini & Baziar 2004). Only the 
range of  model parameters has to be considered; 
indeed, the prior is defined as a joint uniform dis-
tribution as:

Figure 1. Regression analysis between φ′ and normal-
ized cone tip resistance q (Kulhawy & Mayne 1990).
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repeatedly applied. If  several data sets are available 
(i.e. CPT, SPT), the posterior knowledge of model 
parameters, after CPT results are considered, may 
be used as prior knowledge to obtain the posterior 
probability distribution using the SPT values as 
input data. Such an approach is called Bayesian 
Sequential Updating (BSU) (Cao et al. 2016).

3.4 Markov Chain Monte Carlo (MCMC) 
simulation

When the prior knowledge and likelihood function 
are sophisticated, Equation 7 can be hard to solve 
explicitly or analytically due to the presence of the 
normalizing constant K. To bypass this inconven-
ience, the MCMC method is used, which, in this 
case, draws many equivalent sample of φ′ from a 
target distribution, expressed by Equation 7. The 
samples drawn are then used for a statistical analy-
sis of the parameter φ′. In particular, the Metrop-
olis Hasting algorithm is used in the MCMC 
simulation (Hasting 1970, Wang & Cao 2013).

4 BAYESIAN EQUIVALENT SAMPLES 
TOOLKIT (BEST)

BEST is an Excel add-in that, using Excel VBA, 
implements MCMC to obtain Bayesian updates of 
geotechnical data statistics (Wang et al. 2016). The 
program is able to apply the Bayesian equivalent 
sample method for different soil types (i.e. clay, 
sand, and rock) with two different kinds of trans-
formation models:

− built—in model;
− user—define model.

For the case of the “built-in model” option the 
transformation model MT and its coefficients are 
already assigned. The inbuilt transformation mod-
els cover only a specific set of transformations, 
therefore requiring a particular set of input data. 
For the case of sand layers and friction angle the 
model 2.2 is featured, and the input data required 
are CPT data, and the prior knowledge of friction 
angle’s model parameters (i.e. uniform distribution 
in the intervals [μmax, μmin], [σmax, σmin]). The “user-
defined model” option is more flexible since is able 
to perform a statistical analysis of an arbitrary 
geotechnical parameter as long as the coefficients 

Informative priors can be adopted when more 
information on XD are available. As explained in 
the next section the use of such priors may increase 
the computational demands. Within the context of 
geotechnical engineering, a detailed analysis of 
available procedures for prior knowledge estima-
tion is given in Cao et al. (2016).

3.2 Likelihood function

The likelihood function is defined as the PDF of 
the observation data for a given set of μ and σ. The 
Hypothesis of observation data as nc independent 
Gaussian random variable, leads to:

P
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It is worth noting that, when XD (i.e. φ′) is not 
measured directly, the likelihood is a function of 
both the probabilistic model MP, used to model the 
inherent variability, and the transformation model 
MT (Eq. 2). Hence, given a set of observation data, 
a comparison among different MT can be carried 
out by evaluating Equation 6 for each transforma-
tion model. In this way the most suitable likelihood 
function for a better estimation of the posterior 
knowledge can be selected (Cao & Wang 2014).

3.3 PDF of the friction angle

Once the posterior knowledge is evaluated, the 
probability density function of friction angle is 
then obtained through the theorem of total prob-
ability as:

P Data
P P d d

( | , )prior
( | , ) ( , | )D t ;

φ
φ μ| σ μP) ( ,,σ μd dd| )Data σ ;;

μ σ,

=
∫  (7)

where P(φ|μ,  σ) is the probability density func-
tion of the friction angle for a given set of model 
parameters; P(μ,σ|Data) is the posterior knowl-
edge of model parameters. This process can be 
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and uncertainty of MT are specified. The program 
also requires the input of several numerical param-
eters that control the MCMC algorithm operation. 
These include the number of Markov iterations 
(i.e. number of MonteCarlo runs), the number of 
equivalent samples obtained in each MonteCarlo 
run, the number of samples to discard from one 
step to the next of the Markov iteration. If  the 
proposal distribution used in the Metropolis Hast-
ing algorithm is characterized by a wrong start-
ing point, a large sequence of equivalent samples 
is necessary to reach the stationarity distribu-
tion of MCMC simulation, which is called the 
burn-in period (Ravenzwaaij et  al. 2016). Hence, 
the number of samples to discard should be large, 
since the firsts will not be reliable for the subse-
quent statistical analysis. BEST suggests picking 
up more than 31000 equivalent samples and dis-
carding more than 1000 of them.

4.1 Illustrative example

The following design example is taken from Brito 
& Sorensen (2010). This section shows how to eval-
uate the probabilistic distribution of friction angle 
for a dense fine glacial outwash sand deposit for 
the construction of a pad foundation. Four CPT 
tests were carried out to a depth up to 8 m, whose 
profiles are reported in Figure 2. Note that each 
CPT test consist in eighty data values.

Firstly, a Bayesian equivalent samples method is 
carried out using the built-in model for sand. Due 
to the lack of information about the project site, 
prior knowledge is described by a joint uniform 
distribution of the model parameters (μ, σ) of φ 
(Eq. 5). Initially, the ranges of prior model param-
eters are taken from BEST under the command 
help (Table  1). This contains the typical range 
values of μ and σ for different design parameters 
according to the literature.

The “built-in model” for the estimation of φ 
requires the normalized cone tip resistance as 
input data, and these are related to the friction 
angle through Equation  2. Initially, one single 
run is considered, in which 31000 equivalent sam-

ples are selected and 1000 of them are discarded. 
Figure 3a and 3b show, respectively, the histogram 
of the friction angle values drawn, with all CPT 
values as input data, and the scatter plot of the 
equivalent sample. The 90% confidence interval 
is reported since BEST evaluate the 5% percentile 
and the 95% percentile.

It is possible now to compare the obtained 
equivalent sample distribution to that of the origi-
nal CPT data. To do so the equivalent samples 
generated are back-transformed into values of the 
measured property ξ through Equation 2 using the 
same coefficients a, b and σm adopted in the trans-
formation model in BEST. In this way it is possible 
to evaluate 30000 values of the cone tip resistance 
qc for a given depth D (assuming a constant bulk 
weight of 20 kN/m3). The mean, the 5% percentile 
and the 95% percentile are plotted at each depth 
D alongside the measured data in Figure  4. The 
results show that almost all the data below 1  m 
are included in the 90% confidence interval. The 
anomaly at shallow depth points to some limitation 
of the transformation model MT. Several reasons 
may be behind that anomaly: strength curvature at Figure 2. CPT data profiles.

Table 1. Range of prior values of μ and σ.

μmax
(°)

μmin
(°)

σmax
(°)

σmin
(°)

Prior (BEST) 42 30 7.1 0.6
Prior (Phoon et al, 1996b) 41 35 6.97 1.27

Figure 3. (a) Frequency of the friction angle drawn; (b) 
Scatter plot of the equivalent samples.
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very shallow stress levels, a relative increase in suc-
tion-derived effects and boundary effects on CPT 
tip resistance at shallow depths (Senders 2010).

4.2 Effect of number of CPT input data

The comparisons among the PDF and CDF of φ′ 
for different single CPTi tests, with i =  1, 2 … 4, 
and the one with all the observation data, as input 
data, are plotted in Figure 5a and 5b respectively. 
The results show that, increasing the observation 
data the standard deviation is significantly reduced 
(between 12 and 18%) with respect to the estimate 
obtained using a single CPT. On the other hand, 
the estimated value of μ is approximately constant. 
It seems reasonable that increasing the number of 
observation data, if  all of them are equally reli-
able, there is a reduction of the estimated param-
eter uncertainties; indeed, the likelihood function 
become more relevant than the prior increasing the 
number of data sets.

4.3 Effect of prior knowledge

The influence of the prior knowledge is analyzed 
using a different range of the model parameter μ 
and σ, taken from Phoon & Kulhawy (1999b) and 
reported in Table 1. Note that, for this comparison, 
all the CPT data are used as input data. The results 
in terms of PDF(φ′) and the statistics value for 
the two different cases are illustrated in Figure 6 
and Table 3. It can be noticed that the difference 
between the two cases, in terms of 5% percentile, is 
2.86°. Indeed, the prior distribution in BEST inte-
grates the studies of Phoon & Kulhawy (1999b) 
with the ones of Cabalar 2010, Salgado et al. 2000, 
Naeini & Baziar 2004, in which micaceous sand, 
silty sand, and mixed and layered samples of sand 
are respectively analyzed. This provides a reduc-
tion of the prior range of the standard deviation 

Figure 4. μ, 5% percentile, 95% percentile and data set.

Table 3. Range prior values from different sources.

Statistics No Prior
Prior
BEST

Prior
Phoon & Kulhawy 
(1999b.)

μ (°) 43.3 41.87 40.93
σ (°)  1.13  0.68  1.83
5% (°) 42.02 40.73 37.87
95% (°) 45.9 43.92 43.96

Figure  5. (a) PDF(φ′) for different input data; (b) 
CDF(φ′) for different input data.

Figure  6. Probability density function of the friction 
angle using prior BEST and prior Phoon & Kulhawy 
(1999b).

and consequently a narrower estimation of PDF 
(φ′). Table  3 also includes the values that would 
be inferred from the data in the absence of any 
Bayesian updating: the friction estimate increases, 
skewed by the shallow data points.
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4.4 Effect of numerical parameters

As mentioned in the previous section, a key step 
for the convergence of MCMC simulation is the 
definition of the number of equivalent samples 
to draw and the ones to discard for each run. The 
initial proposal distribution implemented in BEST, 
is characterized by a μ and σ equal to half  of the 
prior mean and the standard deviation range (i.e. 
36°, 3.25°), which represent a reliable starting 
point (Ravenzwaaij et al. 2016). To test this, several 
runs, with 310, 31000, 62000 and 110000 equiva-
lent sample are conducted. The samples discarded 
for each run are respectively 10, 1000, 2000 and 
10000. The results are illustrated in Figure 7. As 
suggested by BEST, 31000 equivalent samples are 
enough to reach convergence; indeed, no relevant 
difference exists among PDFs with more samples. 
On the other hand, as expected, a limited number 
of samples (i.e. 300) results in less accurate estima-
tions, with broader probability distributions of φ′ 
and a wider 90% confidence interval.

5 CONCLUSION

In this paper, the Bayesian Equivalent Sam-
ples Toolkit, has been tested on a four CPT data 
set to estimate friction angle. As shown by the 
example analyses presented, this kind of numeri-
cal approach practically eliminates statistical error 
and concentrates the effort of the designer on the 
description of previous knowledge (prior) and in 
the selection of transformation models.
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