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Abstract: The development of overpressure in continental margins is typically evaluated with 

hydrogeological models. Such approaches are used to both identify fluid flow patterns and to 

evaluate the development of high pore pressures within layers with particular physical properties 

that may promote slope instability. In some instances, these models are defined with sediment 

properties based on facies characterization and proxy values of porosity, permeability or 

compressibility are derived from the existing literature as direct measurements are rarely available. 

This study uses finite-element models to quantify the differences in computed overpressure 

generated by fine-grained hemipelagic sediments from Gulf of Cadiz, offshore Martinique and Gulf 

of Mexico, and their consequences in terms of submarine slope stability. By comparing our 

simulation results with in-situ pore pressure data measured in the Gulf of Mexico, we demonstrated 

that physical properties measured on volcanic-influenced hemipelagic sediments underestimate the 

computed stability of a submarine slope. Physical properties measured on sediments from the study 
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area are key to improving the reliability and accuracy of overpressure models, and when that 

information is not available literature data from samples with similar lithologies, composition and 

depositional settings enable better assessment of the overpressure role as a pre-conditioning factor 

in submarine landslide initiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 
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Overpressure development in marine sediments is a major pre-conditioning factor that favours slope 

instability by decreasing the amount of gravitational driving stresses required to mobilize sediments 

(Dugan & Sheahan 2012). If the pressure of the water contained in the pore space exceeds the 

hydrostatic condition, failures can be initiated in low angle submarine slopes by a relatively minor 

trigger such as a small magnitude earthquake (Urlaub et al. 2015). Generation of overpressure is 

commonly associated with rapid sedimentation (Dickinson 1953; Gibson 1958) and with the physical 

properties of the sediments, such as porosity, hydraulic conductivity and compressibility. The 

occurrence of overpressure within sediments can be studied directly through in-situ measurements 

with piezocone tests (Lunne et al. 1997) and pore pressure penetrometers (Flemings et al. 2008), or 

indirectly from borehole logging measurements, such as sonic, resistivity and density logs (Mouchet 

& Mitchelle 1989), and from velocity analysis derived from seismic reflection data. Finally, 

overpressure development and evolution can be evaluated using hydrogeological models. The 

application at the basin scale of those models, in some cases, aims to provide a broad understanding 

of the conditions that may have generated previous slope instability (Gutierrez & Wangen 2005; 

Bellwald et al. 2019; Llopart et al. 2019). In many cases, however, sediment samples from the study 

area are not available for geotechnical testing. In such instances, porosity, permeability and 

compressibility values are typically derived from the literature based on their expected lithologies 

(Urlaub et al. 2015), depositional environment (Bellwald et al. 2019) or geographic area. On the 

other hand, measuring sediments physical properties implies a series of inevitable errors and 

uncertainties, which affect the reliability of models, such as presence of test errors, insufficient 

number of tests and the inherent variability of soil properties (Phoon & Kulhawy 1999; Zhang et al. 

2012). 

This study aims to evaluate the suitability of hydrogeological models based on literature derived 

physical properties of sediments collected from similar depositional environments and with 

comparable grain size distributions. To do this, we built a series of finite-element models that 

simulate the development of overpressure on a hemipelagic unit rapidly buried by a series of mass 
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wasting events. Using the same depositional scenario, we defined the hemipelagic layer with initial 

porosity, hydraulic conductivity and specific storage measured on comparable sediments with 

similar grain size distribution, but collected in three different depositional settings: Alentejo basin 

(Gulf of Cadiz, SW Iberian margin), Grenada basin (offshore Martinique, Lesser Antilles) and Ursa 

basin (Gulf of Mexico). We further used the actual sedimentary history at Ursa Basin, where 

overpressure is groundtruthed with piezometer measurements, and tested the influence of using 

actual physical properties from the area versus physical properties taken from other depositional 

environment of similar grain size. 

Depositional settings 

We based this study on mechanical properties from 18 hemipelagic sediment samples collected from 

three different oceanic regions, characterized by different depositional settings, and all affected by 

well-documented subaqueous slope instabilities (Fig. 1a). The Alentejo basin is located in the 

northern sector of the Gulf of Cadiz, SW offshore Portugal (Fig. 1b). The area is characterized by an 

extensive contourite depositional system (Hernández-Molina et al. 2015), generated by the 

Mediterranean Outflow Water, which distributes sediments entering the gulf mainly through the 

Guadalquivir river (Mulder et al. 2003). The Grenada basin (Fig. 1c), offshore Martinique, is mainly 

composed by volcanic ashes, hemipelagic sediments and volcanoclastic turbidite deposits (Lafuerza 

et al. 2014) due to the activity of the surrounding volcanoes and absence of important sediment 

inputs from rivers. The sediments in the deep part of the basin accumulate at sedimentation rates 

up to 20 cm/ky (Le Friant et al. 2015). The third area is the Ursa basin (Fig. 1d), in the Gulf of Mexico. 

The region is known for the very high terrigenous sedimentation, entering the basin from the 

Mississippi River, taking place upon a salt substrate (Worrall & Snelson 1989). The slope is 

characterized by well-documented overpressure due to sedimentation rates exceeding 25 m/ky 

during some intervals in the Pleistocene (Flemings et al. 2006; Sawyer et al. 2007). IODP expedition 

308 performed in-situ pore pressure measurements using the DVTPP and T2P piezoprobes (see 

Flemings et al. 2008; Long et al. 2008 for further details on the measurements), and documented 
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high overpressure associated mainly with the high sedimentation rates in the area (Expedition 308 

Scientists 2005). Previous studies (Urgeles et al. 2007, 2010) modelled the stratigraphic evolution of 

the margin considering the physical properties of the different units in the Ursa Basin, with the aim 

of understanding the present-day pore pressure condition revealed by the in-situ measurements. 

Despite the significant scatter observed in the direct overpressure measurement, especially within 

the uppermost hemipelagic drape, 1D simulations reproduced the general vertical overpressure 

distribution at site U1324 (Fig. 2) (for more information about previous overpressure modelling see 

Urgeles et al. 2010). 

Methods 

Sediments from the Alentejo basin (6 samples) have been collected using a gravity corer during the 

INSIGHT_Leg1 (2018) cruise in the Gulf of Cadiz. Initial void ratio (e0), compression index (Cc) and 

initial hydraulic conductivity (e0) in these samples have been derived with stepped loading (Rowe 

and Barden type of cell) or Constant Rate of Strain (CRS) oedometer tests (Fig 3a and Table 1). 

Samples from Grenada basin (3 samples) and from the Ursa basin (9 samples) were recovered from 

wells drilled during two separate IODP expeditions. The samples from the Grenada basin used in this 

study have been drilled at well U1399 during the IODP expedition 340 (Le Friant et al. 2015) and 

their compressibility/permeability properties measured with 1D consolidation tests (Fig. 3b) 

(Lafuerza et al. 2014). Sediments from the Ursa basin have been taken from wells U1322 and U1324, 

drilled during the IODP expedition 308 (Expedition 308 Scientists 2005; Flemings et al. 2006). Also in 

this case, their physical properties have been analysed using a combination of incremental loading 

and CRS oedometer tests (Fig. 3c) (Urgeles et al. 2007, 2010; Long et al. 2008; Stigall & Dugan 2010).  

In our basin-modelling approach, we input the physical properties of the sediments at their initial 

depositional conditions, to simulate the pre-failure overpressure behaviour of the sediment 

composing the stratigraphic column. Therefore, input data such as porosity, hydraulic conductivity 

and specific storage are extrapolated to 1 kPa along the virgin consolidation line (e.g. Llopart et al. 
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2019). All of the samples were composed by hemipelagic sediments, collected outside mass 

transport deposit areas: for this reason, we assumed they did not undergo heavy deformation or 

mixing processes and the extrapolation of their physical properties to 1 kPa can be considered as a 

fair reproduction of their behaviour at depositional conditions.  

Grain size distribution for all samples has been measured using laser diffractometers. We adopted 

the grain size classification proposed by Wentworth (1922) to derive the percentages of sand (2 mm 

- 62.5 μm), silt (62.5 μm – 4 μm) and clay (< 4 μm) measured in the sediments. The three-

components textural classification for muddy sediments proposed by Flemming (2000) has been 

used to subdivide the analysed sediments in four classes based on their sand, silt and clay content: 

D-II (very silty slightly sandy mud), D-III (silty slightly sandy mud), E-II (slightly clayey silt) and E-III 

(clayey silt) (Fig. 4). 

Overpressure development simulations have been performed using the finite element software 

BASIN (Bitzer 1996, 1999). Modelling the stratigraphic and hydrodynamic evolution of a 2D section, 

BASIN allows the calculation of non-equilibrium compaction and overpressure generation on 

sediments by coupling compaction and 2D fluid flow. The consolidation model incorporates porosity-

dependent sediment compressibility through the equation (Bitzer 1996): 

(
𝜕

𝜕𝑥
 
𝑘𝑥(Ø)𝜕𝑝 

 𝜕𝑥
) + (

𝜕

𝜕𝑥
 
𝑘𝑧(Ø)𝜕𝑝 

 𝜕𝑧
) =  

(1 − Ø) 𝜌𝑔𝛼(Ø)𝜕𝑝

 𝜕𝑡
 

where kx(ϕ) is the porosity-dependent hydraulic conductivity in the x-direction, α(ϕ) is the porosity‐

dependent sediment compressibility, p the fluid pressure, ϕ the porosity, ρ is the sediment bulk 

density and g is the gravity constant. Sediment compressibility in BASIN is calculated from the 

specific storage (Ss), which is defined as the volume of water removed from a unit volume of a 

confined aquifer with an increase in the vertical stress. It relates with the more commonly used 

compression index by the relation (Jorgensen 1980): 
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𝑠𝑠 =  
0.434 Cc γw

σ’v (1 + 𝑒0)
 

where Cc is the compression index, γw is the specific weight of water, σ’v is the effective vertical 

stress and e0 is the void ratio at depositional conditions (1kPa). 

In first instance, we built a series of 1D models to simulate the deposition of a 500 m thick 

hemipelagic unit with a sedimentation rate of 30 cm/ky, followed by a series of turbidite events that 

deposit 250 m of sand-rich material during 1000 years. Initial thickness of the units, sedimentation 

rates and boundary conditions, as well as physical properties of the turbidite unit, are kept constant 

through the different scenarios. Since no samples associated with turbidites were available in our 

database, we defined its physical properties with values taken from the literature (Reed et al. 2002). 

The only variables that change in between the different models are initial porosity, initial hydraulic 

conductivity and initial specific storage of the hemipelagic layer. In the first set of analysis (Scenario 

A), we defined the properties of the hemipelagic unit by averaging arithmetically the physical 

properties values for each study area. In the second series of tests (Scenario B), we assigned physical 

properties to each hemipelagic layer based on the average specific storage, porosity and hydraulic 

conductivity of the samples from each grain size class. The BASIN input parameters used for the 

simulation are provided in Table 2. 

Secondly, to evaluate the reliability of our results and their significance in terms of submarine slope 

stability, we applied our approach on a case study where in-situ overpressure measurements have 

been collected. To do so, we considered the results of site U1324 drilled in the Ursa Basin during the 

IODP expedition 308. 

Using BASIN we reproduced the stratigraphic architecture, sedimentation rate, boundary conditions 

and lithologies of a 1D overpressure model at site U1324 from Urgeles et al. (Fig. 2) (2010). Then, we 

substituted the original physical properties associated with the top hemipelagic drape with the ones 

measured from the sediments collected in the Alentejo and Grenada basins (Tab. 2). By doing this, 
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we aim to evaluate the differences in overpressure generated by defining hydrogeological models 

with physical properties measured from hemipelagic sediments collected in different areas, and 

compare them with the reference calibrated results from Urgeles et al. (2010). At site U1324, 612 m 

of sedimentary sequence deposited between the Pleistocene and the Holocene (Expedition 308 

Scientists 2005; Flemings et al. 2008) were drilled. From bottom to top, the main units composing 

the Ursa Basin consist of: (1) the sand-dominated lower Mississippi Canyon Blue Unit (Late 

Pleistocene) (Sawyer et al. 2007), (2) a mud dominated channel levee assemblage and (3) a mud-

drape deposited during the last ~20ky (Behrmann et al. 2006; Flemings et al. 2008). The 

overpressure evolution of the basin had been modelled and is modelled in this study since 

deposition of the sand-rich Blue unit (~ 100 ky ago), followed by the silt lithologies associated with 

the filling of the Ursa Canyon, and by the mud-dominated sediments from the channel levee 

assemblage and hemipelagic sediments (Fig. 2) (Urgeles et al. 2007, 2010). 

This study also refers to pore pressure in terms of overpressure ratio (λ) (Flemings et al. 2008), 

defined as: 

λ =
(𝑝 −  𝑝ℎ)

(σ𝑣 − 𝑝ℎ)
 

where p is pore pressure, ph is the hydrostatic pressure and σv is the lithostatic or total vertical stress. 

A λ value of 0 means that pore pressure is hydrostatic, while a value of 1 means that the overburden 

is fully sustained by the pore water. 

Results 

Physical Properties 

The grain size distribution of sediments collected in each study area are relatively homogeneous 

although each location has a distinctly different composition. Whilst all samples analysed are silt 

dominated, the percentages vary significantly between 57.36% and 83.1%. Clay contents also ranged 

between 11.1% and 42.2%, and sand sized grains comprised the lowest fraction at each site (0% to 
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10.5%) (Fig. 4). The Ursa Basin has the lowest sand content, with 8 out of 9 samples corresponding 

to the “E” class of Flemming’s classification (sand < 5%). Within the Grenada basin 2 out of 3 samples 

tested show a sand content greater than 5% and a clay content less than 25%. Sediments from the 

Alentejo basin are similar to the Ursa basin: sand content is less than 5% for 5 out of 6 samples, with 

clay values between 25% and 35%. Therefore, group D-II in Flemming’s classification is only 

represented by two samples from the Ursa basin. 

We used ternary contour diagrams to visualize different textural composition of sediment in relation 

with their compression index (Fig. 5a), initial porosity (Fig. 5b) and initial hydraulic conductivity (Fig. 

5c). Results show a broadly heterogeneous relationship between grain size and physical properties. 

Compression index (Fig. 5a) ranges between 0.22 and 0.92. The highest Cc values are related to an 

increase in silt percentage and tend to decrease in sediments with some sand content. Samples from 

the Grenada basin, with higher silt content, show a compression index ranging between 0.67 and 

0.75, while the lowest values are found in sediments from the Ursa basin, where most of the 

samples show Cc values below 0.65. An exception is represented by sample 308-1322B_H08, which 

has higher clay content (42.2%) and compression index (0.92). 

A similar trend is illustrated in the initial porosity diagram (Fig. 5b), with porosity values ranging 

between 0.52 and 0.79. The higher values are reached in sediments with higher silt content while 

the lower values are linked to higher sand content. However, sample SdG_02_102 differs from this 

trend showing a high initial porosity (0.78) despite a relatively low silt content (61%). 

Values of hydraulic conductivity at deposition (1kPa) vary within two orders of magnitude (1E-8 to 

1E-10 m/s). The Alentejo basin samples produce the highest values while the lowest values 

correspond to samples from the Grenada basin (Fig. 5c).  

Our first modelling stage (Scenario A) (Fig. 6a) consisted in three separate models, where physical 

properties of the hemipelagic layer described above have been averaged for each study area (Tab. 
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2). Fine-grained sediments from the Alentejo basin and from the Ursa basin show a comparable 

range of overpressure development, reaching a maximum overpressure ratio (λ) of 0.18 at 343 mbsf 

for the Alentejo basin model and 0.25 at 341 mbsf for the Ursa basin (i.e., immediately below the 

turbidite unit). The computed overpressure ratio from the Grenada basin model shows higher values 

with λ up to 0.56 at 329 mbsf.  

The second modelling scenario (Scenario B) consisted on defining the hemipelagic units with physical 

properties averaged from their grain size distribution classes (Fig. 6b). The minimum peak value 

(~0.06) is observed in the model defined with properties from the group E-II (sand<5%, clay < 25%). 

Models from groups E-III and D-III show comparable maximum overpressure ratios (0.24 and 0.19), 

while the maximum values (~0.53) are reached by the model defined with the properties averaged 

from the samples in the group D-II (Sand > 5%, Clay < 25%). 

Fig. 7 shows the present-day overpressure resulting at site U1324 from our 1D simulations.  Changes 

in the physical properties of the hemipelagic unit, at the top of the stratigraphy, did not allow any of 

our scenarios to fit perfectly neither the reference 1D model (Urgeles et al. 2010) nor the in-situ 

overpressure measurements (Flemings et al. 2008). The model defined with hydraulic conductivity, 

specific storage and initial porosity from the Alentejo basin underestimates the overpressure within 

the hemipelagic layer, mainly because of its higher permeability compared with the hemipelagic 

sediment from the Ursa basin (Tab. 2). Finally, the model defined with physical properties from the 

Grenada basin provide a very different output compared with the other models (Fig. 7). Even if it 

reproduces better the measured in-situ overpressures from the hemipelagic layer, the 

hydrodynamics of the model is split in two separate systems: in the lower part of the stratigraphy 

the overpressure increases constantly from the bottom to the top, reaching a maximum 

overpressure value of 1 at the base of the muddy sediments. Above this point, the overpressure 

drops, keeping a constant value of 0.7 up to the seafloor. 

Discussion 
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In the first part of our study, two different scenarios have been used to analyse the influence of 

variable grain size composition of hemipelagic sediments in overpressure development. In scenario 

(A), the hemipelagic layer was defined using physical properties collected from specific study areas 

and resulted in much higher overpressure generation for sediments of the Grenada Basin compared 

to the other two areas considered. In Scenario (B), the samples with relatively high silt and low clay 

content and sand content higher than 5% (sediment class D-II) generated the highest overpressure. 

This sediment class includes only two samples, both collected in the Grenada Basin. In this case, the 

results obviously coincide with those of samples for the Grenada Basin in scenario A. Our results 

therefore seem to show that overpressure generation is rather related with the sediment 

composition and depositional setting instead of grain size distribution. This is in agreement with 

previous studies showing that there is no direct correlation between grain size distribution and 

sediment physical properties (Lafuerza et al. 2014) in marine muddy sediments. 

However, when considering each depositional environment (e.g. river influenced), the grain size 

distribution has a major influence on overpressure development. Thus, sediments with low clay 

content (E-II) and samples with similar clay content but higher sand content (D-III) generated lower 

overpressure (Fig. 4 and 6a). Nonetheless, factors not considered in this study such as sorting and 

particles rounding might have played a significant role that should be investigated in future works. 

Comparing the overpressure results with the physical properties used for the simulations indicates 

that the development of overpressure is associated with low initial hydraulic conductivities and 

specific storages (Table 2). Such differences in physical properties between the Grenada Basin and 

the other two areas could reflect substantial diversity in sediment composition and mineralogy. This 

may in turn may be directly linked to the depositional environments: a) the hemipelagic sediments in 

the Alentejo and Ursa basins are largely fluvially derived from the Guadalquivir and Mississippi 

rivers, respectively; b) volcanically derived sediments from the Grenada basin where these 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


sediments are influenced by volcanic ashes released by the extensive series of volcanos in the Lesser  

Antilles volcanic arc (Wiemer & Kopf 2015). 

Comparing the 1D consolidation behaviour for volcanically derived hemipelagic sediments to the 

river-fed samples, it is possible to make assumptions about the reason of such notable differences in 

physical properties (Fig. 3). The Grenada basin sediments show lower compressibility at low 

consolidation stress and a transition to high compressibility at higher vertical stress (Fig. 3b). Similar 

behaviour known as structuration has been documented especially for fossiliferous, cemented or 

highly bioturbated sediments (Locat et al. 2003; Spinelli et al. 2007): in these instances, sediments 

are capable of holding water in rigid structures, preventing compaction during the early stages of 

consolidation or, in case of high degrees of cementation, also at high burial depths. Physical 

properties of the sediments from the Grenada basin, with higher compression index and lower 

specific storage and hydraulic conductivity, suggest that a similar mechanism could occur in the 

volcanic ash-rich hemipelagic sediments from the Lesser Antilles volcanic arc. Volcanic ashes, in fact, 

may generate the same type of structures preventing pore water to be released in the system at low 

consolidation stresses.  

Structuration in the Grenada basin sediments retains the water in the pore space, reducing the 

specific storage (which is, by definition, the volume of water removed from a unit volume of a 

confined aquifer) and decreasing the permeability, since the pore water gets trapped into rigid 

structures. Those physical properties represent the ideal conditions for the development of 

overpressure in marine sediments, and this could explain why the Grenada basin sediments 

(scenario A) develop higher overpressure (near lithostatic), which leads to a lower vertical 

displacement in the model. 

It must be also mentioned that defining hydrogeological models with marine sediments that show 

structuration might question the hydrogeological model results. “Delayed consolidation” (Locat et al. 

2003), as it is visible for the Grenada basin hemipelagic sediments (Fig. 3b), implies two different 
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consolidation responses within the same sediment sample. Considering that the compression index 

is usually input as one representative value for each lithology, modelling such variation can 

represent a challenge. This is the reason why it is important to recognize structuration phenomena 

in the analysed samples and to consider its consequences while evaluating simulation results. 

This behavior is well exemplified when modelling the Ursa basin sedimentation history with physical 

properties from the Grenada Basin (Fig. 7). The lower hydraulic conductivity and specific storage of 

the sediments from the Grenada basin, mainly due to the structuring phenomena previously 

discussed, makes the hemipelagic unit act as a perfectly impermeable seal in case of the very high 

sedimentation rates of the Ursa Basin. The pore water from the lower formations, characterized by 

coarser grain size and higher permeability, flow upwards and accumulates at the base of the seal, 

reaching extreme overpressure values up to 1 (Fig. 7). Nonetheless, this trend does not find 

correspondence in the in-situ measurement, where overpressure reaches its maximum within the 

hemipelagic layer and decrease constantly with depth, indicating a continuity between the pore 

water flow in the lower part of the stratigraphy and in the uppermost hemipelagic layer. 

Significance for submarine slope stability 

The development of overpressure in a submarine slope affects the magnitude of the events that can 

trigger a failure (e.g. earthquakes), or, in case of very high values and/or steep slope, can lead to 

slope instability with no external trigger (Stigall & Dugan 2010; Urlaub et al. 2015). A preliminary 

quantification of the consequences from the different overpressure resulting from our 1D models at 

site U1324 can be made by calculating the factor of safety (FoS) on an hypothetical 2º submarine 

slope using the equation (Flemings et al. 2008): 

𝐹𝑜𝑆 =
tan Ø𝑓

sin 𝜃 cos 𝜃
 (cos2𝜃 − 𝜆) 
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where 𝜃 is the surface slope, 𝜆 the overpressure ratio and θf  the friction angle of 28º as it is was 

measured on the hemipelagic sediments in the Ursa Basin (Urgeles et al. 2007). FoS greater than 1 

indicates stable slope, while values lower than 1 indicate slope failure. 

The FoS has been calculated on the sediment deposited starting from 40000 years ago, 

corresponding to the beginning of the mud dominated channel levee assemblage, until the present 

day (Fig. 8). As the FoS decreases with increasing overpressure, the model generated defining the 

hemipelagic units with the physical properties from the Alentejo and the original Ursa basin 

reference model, show a decrease in the factor of safety until 20 ka. At this point, the hemipelagic 

sediment starts depositing and pore water migrates upwards with overpressure dissipating towards 

the seafloor (Fig. 8). The FoS for these two models reaches a minimum of around 3, increasing up to 

five at the present day. On the contrary, the model where the hemipelagic layer is defined with the 

physical properties from the Grenada basin shows an increase in overpressure values also after 20ky. 

This is because the deposition and compaction of the hemipelagic sediments creates a seal which 

prevent the water from the lower part of the stratigraphy to flow upwards. In this case, the FoS 

reaches values of around 2 which propagate almost constantly from 20 ka until the present-day (Fig. 

8).  

At the end of the simulations, none of the models results in factor of safety as low to induce the 

slope to fail (<1) in the considered stratigraphic level. Nevertheless, 1D sedimentation models at site 

U1324 show a completely different overpressure development history when the model is defined 

with the hemipelagic sediments from the Grenada basin, resulting in a considerable underestimation 

of the factor of safety at the base of the first deposited fine sediment unit.  

Our modelling results show that physical properties derived from only the lithological 

characterization or the grain size distribution available in the literature may produce inaccurate 

overpressure models, with consequent misleading slope stability estimations. On the other hand, 

models based on physical properties derived from similar grain size, depositional environment and 
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expected compositional nature of sediments, such as the ones from the Alentejo basin and the Ursa 

basin, provided similar overpressure development results. This indicates that, in the absence of 

direct measurements, literature derived physical properties based on grain size characteristics and 

depositional setting are expected to produce more accurate overpressure development for stability 

analysis of submarine slopes. However, care should be taken in settings where presence of 

microfossils such as diatoms, initial cementation or volcanic glass particles could provide sediment 

structuration. 

Conclusions 

Using hydrogeological modelling we show how the sediment characteristics in some depositional 

environments have a significant influence on the amount of overpressure generated in marine 

hemipelagic sediments. We demonstrate how fine-grained marine sediments collected from 

different sedimentary environments (volcanic-influenced vs. river-dominated) can result in 

differences in overpressure in excess of one order of magnitude, and the consequences of those 

discrepancies for submarine slope stability assessment. Phenomena such as structuration of marine 

sediments needs to be carefully considered when carrying out basin hydrogeological models. Our 

results support the idea that, to achieve accurate results, besides accurate stratigraphic architecture 

and age of the units, hydrogeological models should be defined with physical properties measured 

from samples collected in the study area. In instances where such an approach is not feasible, 

assigning initial void ratio, hydraulic conductivity and specific storage extracted from the literature 

for samples with similar expected lithologies, composition and depositional settings are likely to 

provide the most accurate estimates.  Given that this data is generally difficult to find within the 

scientific literature, a global open database for published physical properties is paramount to 

increase the accuracy of basin hydrogeological models in the future. 

Acknowledgments 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


This research used samples and/or data provided by the International Ocean Discovery Program 

(IODP) and has received funding from the European Union’s Horizon 2020 research and innovation 

programme under the Marie Skłodowska-Curie grant agreement No 721403. The Spanish “Ministerio 

de Economia y Competitividad” and the European Regional Development Fund through grant 

CTM2015-70155-R (project INSIGHT) are acknowledged. We also thank Brandon Dugan and another 

reviewer for their comments that significantly improved our manuscript. 

References 

Behrmann, J.H., Flemings, P.B., et al. 2006. Rapid sedimentation, overpressure, and focused fluid 

flow, gulf of mexico continental margin. Scientific Drilling, 1, 12–17, 

https://doi.org/10.2204/iodp.sd.3.03.2006. 

Bellwald, B., Urlaub, M., Hjelstuen, B.O., Sejrup, H.P., Sørensen, M.B., Forsberg, C.F. & Vanneste, M. 

2019. NE Atlantic continental slope stability from a numerical modeling perspective. 

Quaternary Science Reviews, 203, 248–265, https://doi.org/10.1016/j.quascirev.2018.11.019. 

Bitzer, K. 1996. Modeling Consolidation Sedimentary and Fluid Basins Flow. Computers & 

Geosciences, 22, 467–478. 

Bitzer, K. 1999. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, 

subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary 

basins. Computers and Geosciences, 25, 431–447, https://doi.org/10.1016/S0098-

3004(98)00147-2. 

Dickinson, G. 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. AAPG 

Bulletin, 37, 410–432. 

Dugan, B. & Sheahan, T.C. 2012. Offshore sediment overpressures of passive margins: Mechanisms, 

measurement, and models. Reviews of Geophysics, 50, 271–276, 

https://doi.org/10.1029/2011RG000379. 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


Expedition 308 Scientists. 2005. Overpressure and fluid flow processes in the deepwater Gulf of 

Mexico: slope stability, seeps, and shallow-water flow. Integrated Ocean Drilling Program 

Expedition 308 Scientific Prospectus. 

Flemings, P., Behrmann, J., John, C. & Expedition 308 Scientists. 2006. Proceedings of the Ocean 

Drilling Program. IODP Management International, Inc., College Station TX. 

Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H. & Sawyer, D. 2008. Pore 

pressure penetrometers document high overpressure near the seafloor where multiple 

submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of 

Mexico. Earth and Planetary Science Letters, 274, 269–283, 

https://doi.org/10.1016/j.epsl.2008.06.027. 

Flemming, B.W. 2000. A revised textural classification of gravel-free muddy sediments on the basis 

of ternary diagrams. Continental Shelf Research, 20, 1125–1137, 

https://doi.org/10.1016/S0278-4343(00)00015-7. 

Gibson, R.E. 1958. The Progress of Consolidation in a Clay Layer Increasing in Thickness with Time. 

Géotechnique, 8, 171–182, https://doi.org/10.1680/geot.1958.8.4.171. 

Gutierrez, M. & Wangen, M. 2005. Modeling of compaction and overpressuring in sedimentary 

basins. Marine and Petroleum Geology, 22, 351–363, 

https://doi.org/10.1016/j.marpetgeo.2005.01.003. 

Hernández-Molina, F.J., Sierro, F.J., et al. 2015. Evolution of the gulf of Cadiz margin and southwest 

Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic 

implications from IODP expedition 339. Marine Geology, 377, 7–39, 

https://doi.org/10.1016/j.margeo.2015.09.013. 

Jorgensen, D.G. 1980. Relationships betwa Basic Soils-Engineering Equations and Basic Ground-

Water Flow Equations. Geological Survey Water-. 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


Lafuerza, S., Le Friant, A., et al. 2014. Geomechanical Characterization of Submarine Volcano-Flank 

Sediments, Martinique, Lesser Antilles Arc BT  - Submarine Mass Movements and Their 

Consequences: 6th International Symposium. In: Krastel, S., Behrmann, J.-H., et al. (eds). Cham, 

Springer International Publishing, 73–81., https://doi.org/10.1007/978-3-319-00972-8_7. 

Le Friant, A., Ishizuka, O., et al. 2015. Submarine record of volcanic island construction and collapse 

in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP 

Expedition 340. Geochemistry Geophysics Geosystems, 16, 420–442, 

https://doi.org/10.1002/2014GC005684.Key. 

Llopart, J., Urgeles, R., et al. 2019. Fluid flow and pore pressure development throughout the 

evolution of a trough mouth fan, western Barents Sea. Basin Research, 1–27, 

https://doi.org/10.1111/bre.12331. 

Locat, J., Tanaka, H., Tan, T., Dasari, G.R. & Lee, H.J. 2003. Natural soils: geotechnical behavior and 

geological knowledge. In: Tan, T., Phoon, K., Hight, D. & Leroueil, S. (eds) Characterisation and 

Engineering Properties of Natural Soils. Lisse. The Netherlands, Swets & Zeitlinger B.V., 3–28. 

Long, H., Flemings, P.B., Germaine, J.T., Saffer, D.M. & Dugan, B. 2008. Data report: consolidation 

characteristics of sediments from IODP Expedition 308, Ursa Basin, Gulf of Mexico. 308, 

https://doi.org/10.2204/iodp.proc.308.204.2008. 

Lunne, T., Robertson, P.K. & Powell, J.J.M. 1997. Cone Penetration Testing in Geotechnical Practice. 

London, SponPress. 

Mouchet, J.P. & Mitchelle, A. 1989. Abnormal Pressures While Drilling - Origins, Prediction, 

Detection, Evaluation. Manuals Techniques 2, Elf Aquita. Boussens. 

Mulder, T., Voisset, M., et al. 2003. The Gulf of Cadiz: An unstable giant contouritic levee. Geo-

Marine Letters, 23, 7–18, https://doi.org/10.1007/s00367-003-0119-0. 

Phoon, K.-K. & Kulhawy, F.H. 1999. Characterization of geotechnical variability. Canadian 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


Geotechnical Journal, 36, 612–624, https://doi.org/10.1139/t99-038. 

Reed, A.H., Briggs, K.B. & Lavoie, D.L. 2002. Porometric properties of siliciclastic marine sand: A 

comparison of traditional laboratory measurements with image analysis and effective medium 

modeling. IEEE Journal of Oceanic Engineering, 27, 581–592, 

https://doi.org/10.1109/JOE.2002.1040940. 

Sawyer, D.E., Flemings, P.B., Shipp, R.C. & Winker, C.D. 2007. Seismic geomorphology, lithology, and 

evolution of the late Pleistocene Mars-Ursa Turbidite region, Mississippi Canyon Area, 

Northern Gulf of Mexico. AAPG Bulletin, 91, 215–234. 

Spinelli, G.A., Mozley, P.S., Tobin, H.J., Underwood, M.B., Hoffman, N.W. & Bellew, G.M. 2007. 

Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough 

subduction zone. Bulletin of the Geological Society of America, 119, 377–390, 

https://doi.org/10.1130/B25920.1. 

Stigall, J. & Dugan, B. 2010. Overpressure and earthquake initiated slope failure in the Ursa region, 

northern Gulf of Mexico. Journal of Geophysical Research, 115, B04101, 

https://doi.org/10.1029/2009JB006848. 

Urgeles, R., Locat, J. & Dugan, B. 2007. Recursive Failure Of The Gulf Of Mexico Continental Slope: 

Timing And Causes BT - Submarine Mass Movements and Their Consequences: 3 International 

Symposium. In: Lykousis, V., Sakellariou, D. & Locat, J. (eds) Submarine Mass Movements and 

Their Consequences. Dordrecht, Springer Netherlands, 209–219., https://doi.org/10.1007/978-

1-4020-6512-5_22. 

Urgeles, R., Locat, J., Sawyer, D.E., Flemings, P.B., Dugan, B. & Binh, N.T.T. 2010. History of Pore 

Pressure Build Up and Slope Instability in Mud-Dominated Sediments of Ursa Basin, Gulf of 

Mexico Continental Slope BT - Submarine Mass Movements and Their Consequences. In: 

Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. J. & Urgeles, R. 

(eds) Submarine Mass Movements and Their Consequences. Dordrecht, Springer Netherlands, 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


179–190., https://doi.org/10.1007/978-90-481-3071-9_15. 

Urlaub, M., Talling, P.J., Zervos, A. & Masson, D.G. 2015. What causes large submarine landslides on 

low gradient sediment accumulation ? Journal of Geophysical Research: Solid Earth, 120, 1–18, 

https://doi.org/10.1002/2015JB012347.Received. 

Wentworth, C.K. 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of 

Geology, 30, 377–392, https://doi.org/10.1086/622910. 

Wiemer, G. & Kopf, A. 2015. Altered marine tephra deposits as potential slope failure planes? Geo-

Marine Letters, 35, 305–314, https://doi.org/10.1007/s00367-015-0408-4. 

Worrall, D.M. & Snelson, S. 1989. Evolution of the northern Gulf of Mexico, with emphasis on 

Cenozoic growth faulting and the role of salt. Geological Society America, Boulder, CO. In: Bally, 

A. W. & Paler, A. R. (eds) The Geology of North America—An Overview (Vol A). Boulder, 

Geological Society of America. 

Zhang, J., Tang, W.H., Zhang, L.M. & Huang, H.W. 2012. Characterising geotechnical model 

uncertainty by hybrid Markov Chain Monte Carlo simulation. Computers and Geotechnics, 43, 

26–36, https://doi.org/10.1016/j.compgeo.2012.02.002. 
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 initial porosity; Cc: compression index; k0: initial hydraulic conductivity (m/s). #: (Flemming 2000) 

 

  

Area Sample Original 

depth (mbsf) 

% 

Sand 

% 

Silt 

% 

Clay 

Texture 

class
#
 

0 Cc K0 

Alentejo 

Basin SdG-01_190 

1.9 

4.93 57.36 37.71 

E-III 

0.69 0.52 

1.57 x 

10¯⁸ 

SdG-01_187 

1.8 

3.57 62.58 33.85 

E-III 

0.76 0.50 

2.45 x 

10¯⁸ 

SdG-03_144 

1.4 

0.7 69.89 29.41 

E-III 

0.74 0.48 

5.25 x 

10¯⁸ 

SdG-03_137 

1.3 

1.66 70.32 28.28 

E-III 

0.77 0.62 

6.22 x 

10¯⁸ 

SdG-02_207 

2.0 

8.49 66.23 25.28 

D-III 

0.72 0.45 

2.31 x 

10¯⁸ 

SdG-02_102 

1.0 

0.24 61.25 38.51 

E-III 

0.78 0.65 

7.87 x 

10¯⁸ 

          

Ursa 

Basin 308_1322_B2_H3 

8.0 

0 57.8 42.2 

E-III 

0.77 0.92 

5.70 x 

10¯¹⁰ 

308_1322_B4_H1 

24.0 

0 68 32 

E-III 

0.71 0.57 

1.12 x 

10¯⁸ 

308_1322_B7_H2 

54.0 

8.2 62.2 29.6 

D-III 

0.66 0.41 

3.48 x 

10¯⁸ 

308_1322_B13_H2 

111.0 

0 68.1 31.9 

E-III 

0.56 0.23 

1.06 x 

10¯⁸ 

308_1322_B17_H2 

144.0 

0 61.69 38.4 

E-III 

0.59 0.25 

3.08 x 

10¯⁸ 

308_1322_B26_H2 

212.0 

0.63 73.37 26 

E-III 

0.52 0.22 

4.41 x 

10¯⁸ 

308_1324_B2_H3 

8.0 

2.65 72.4 24.4 

E-II 

0.71 0.58 

2.32 x 

10¯⁸ 

308_1324_C1_H5 

57.0 

0 74.3 25.7 

E-III 

0.63 0.35 

8.87 x 

10¯⁹ 

308_1324_C2_H2 103.0 

0 79.8 20.2 

E-II 

0.61 0.28 

5.70 x 

10¯¹⁰ 

          

Grenada 

Basin 340-1399B_4H4 

30.5 

10.5 75.8 13.7 

D-II 

0.78 0.69 

1.55 x 

10¯⁹ 

340-1399B_6H3 

46.5 

3.9 76.1 20.1 

E-II 

0.79 0.75 

1.32 x 

10¯⁹ 

340-1399B_19H3 

138.9 

5.8 83.1 11.1 

D-II 

0.77 0.67 

1.41 x 

10¯⁹ 
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Table 2: 

Parameters used for the simulations in BASIN. The physical properties associated with Turbidity 

Layer have been used in all the simulations, while the Hemipelagic changed. 

 

  

 

 

 

 

Samples 

 

 

 

Initial Porosity 

 

 

 

Initial spec. storage  

(m−1) 

 

 

Initial hydr. cond.  

(m/s) 

 

 

   

 

 

Turbidite Layer (Urgeles et al. 2010) 0.5 0.001 1 × 10¯⁶ 

     

Hemipelagic 

Scenario A - Areas 

Alentejo basin 0.74 0.025 4.28 x 10¯⁸ 

Grenada basin 0.78 0.005 1.43 x 10¯⁹ 

Ursa basin 0.64 0.023 2.71 x 10¯
8
 

 

    

Hemipelagic 

Scenario B – Classes 

 

D - II 0.77 0.003 1.48 x 10¯⁹ 

D – III 0.69 0.014 2.90 x 10
¯8

 

E – II 0.70 0.017 1.04 x 10
¯7

 

E – III 

 

0.69 

 

0.027 

 

3.09 x 10
¯8
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Fig. 1: 

(a) Location of the areas where the sediments considered in this study have been collected from. 

Detailed location of the cores in the (b) Alentejo basin, (c) Grenada basin, (d) Ursa basin. 

Fig. 2 

Site U1324 stratigraphic model adopted for the 1D simulation with corresponding overpressure: in-

situ piezometer overpressure measurements (purple dots) (Expedition 308 Scientists 2005); 

reference 1D modelling result (green line) (Urgeles et al. 2010). Properties for overpressure models 

in Fig. 7 are only changed for the upper hemipelagic drape. 

Fig. 3: 

Consolidation curves showing void ratio e reduction while increasing uniaxial loading ’v. Each plot 

refers to one of the analyzed areas. (a) Alentejo basin. (b) Grenada basin (Lafuerza et al. 2014). (c) 

Ursa basin (Urgeles et al. 2010). 

Fig. 4 

Grain size distribution of the sediments analyzed for this study. The internal subdivision refers to the 

classification for muddy marine sediments proposed by (Flemming 2000) and adopted in this study. 

Fig. 5: 

Ternary contour diagrams comparing sediment composition (% sand, silt and clay) with (a) initial 

porosity, (b) compression index and (c) hydraulic conductivity. Sand axes have been reduced to the 

range 50% - 100% to facilitate visualization. 

Fig.6 

Overpressure generated at the end of the simulations vs computed final depths. The plots refer to 

(a) Scenario A, where physical properties of the hemipelagic units are averaged from each study area 

ACCEPTED M
ANUSCRIP

T

 by guest on March 31, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


and (b) Scenario B, where the properties of the hemipelagic layer are averaged from each of the four 

represented textural classes.  

Fig.7 

Overpressure generated at site U1324 vs computed final depth for the (1) In situ piezometer 

measurements (purple dots); reference overpressure modelled at the same site by Urgeles et al. 

(2010) (black line); overpressure resulting by defining the hemipelagic units with properties collected 

from the other study areas (red and green lines).  

Fig. 8 

Overpressure evolution during the last 40ky (a) and computed factor of safety (b) for all models at 

location of IODP Site U1324. The graph refers to the base of the fine-grained channel levee 

assemblage unit, which started depositing around 40ky ago.  
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