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A B S T R A C T

The SW Iberian continental margin is well recognized as a tectonically active area, where major canyons and
mass wasting events are both present. Earthquake triggered submarine landslides may cause tsunami and result
in catastrophic damage to bordering coastal areas. In this setting, submarine landslide susceptibility mapping
represents a major step towards a regional risk mitigation strategy. Landslide susceptibility mapping in large
offshore areas presents significant challenges as a result of the limited information on controlling variables, large
uncertainties in triggering mechanisms and limited geotechnical data. In this study, a geotechnical model-based
approach has been followed that narrows the range of controlling factors and, within a probabilistic framework,
allows a systematic treatment of parameter uncertainties. This model-based analysis covers the whole SW
Iberian margin increasing by three orders of magnitude the areal extent of precedent offshore slope stability
susceptibility studies. This jump in spatial scale is facilitated by application of a systematic Bayesian updating
procedure, to combine geotechnical information from global databases and that available from regional sites.
Seismic shaking is estimated using an available regional database of seismogenic faults. These tools are im-
plemented within a GIS to generate, via Montecarlo simulations, probabilistic landslide susceptibility maps
based on two different analytical seismic infinite slope stability models. These models differ mainly in the form
of their final results, either as distributions of slope stability safety factors or as distributions of seismic-triggered
slope displacements. Receiving Operator Curves are used to assess the different landslide susceptibility pre-
dictions obtained against a comprehensive regional database of submarine landslides. It turns out that the
models analyzed correctly predict 92% and 82% of the mapped landslide subset chosen for validation for
pseudo-static and displacement-based method respectively. This suggests that, within the limits of the currently
available databases, seismic events are the dominant factor at the origin of the submarine landslides mapped in
the study area. An advantage of the framework presented is that it can quickly incorporate new regional geo-
technical information or better regional landslide databases, as they become available.

1. Introduction

Submarine landslides are widespread in all continental margins and
compared to their subaerial counterparts, they have larger magnitude
and frequently occur on gentler slopes (Hühnerbach et al., 2004;
Chaytor et al., 2009; Urgeles and Camerlenghi, 2013; Behrmann et al.,
2014; Huhn et al., 2019). Submarine landslides may impact directly on
underwater structures and are also capable of generating destructive
tsunami waves (Synolakis et al., 2002; Løvholt et al., 2019). Several

historical and instrumental examples prove the connection between
earthquakes and submarine landslides (e.g., Piper et al., 1999; Geist,
2000; Sassa and Takagawa, 2018) and earthquakes are generally re-
cognized as the main triggering mechanism for tsunami-generating
offshore landslides (ten Brink et al., 2009; Grilli et al., 2009).

Incorporation of landslide generated tsunamis into probabilistic
tsunami hazard assessments is considered particularly difficult (Grezio
et al., 2017), as large uncertainties affect the probability and location of
slope failures. Susceptibility maps are used to predict where a landslide
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is likely to occur (Guzzetti et al., 2006) and are recognized as a key step
in onshore landslide hazard analyses (Corominas et al., 2014). The in-
tensity of seismic shaking is an important component for landslide
susceptibility maps, both onshore (Jibson et al., 2000; van Westen
et al., 2008) and offshore (Lee et al., 1999; Urgeles et al., 2002).

There are different approaches to map landslide susceptibility
(Reichenbach et al., 2018), including heuristic (or index-based), sta-
tistical and probabilistic methods. Heuristic or index-based methods
have been applied to map susceptibility offshore (Hitchcock et al.,
2010; Leon and Somoza, 2011). However, they express landslide sus-
ceptibility in qualitative terms. Statistical methods are used onshore to
map landslide susceptibility at regional scales, quantifying the prob-
ability of failure (Zhu and Huang, 2006; Chauhan et al., 2010). The
application of similar methods offshore (Borrell et al., 2016; Piedade
et al., 2018) faces severe difficulties, because the number of thematic
variables available for prediction is limited by the scarcer data avail-
able.

Quantitative probabilistic prediction is also possible using a process-
based approach to map susceptibility (Jibson et al., 2000; Reichenbach
et al., 2018). In this approach models are used to represent the physical
process producing landslides. For earthquake triggered submarine
landslides suitable models may be based on the infinite slope concept
with effective stress-normalized undrained strength parameters (Lee
and Edwards, 1986).

Lee et al., (1999) integrated a simplified infinite slope models with
GIS technology to map spatial variability of slope failure susceptibility
in a relatively small area (approx. 400 km2) offshore California; Urgeles
et al., (2002) produced a landslide susceptibility map for the Saguenay
Fjord (140 km2 in Quebec, Canada); Mackenzie et al. (2010) used GIS-
based landslide hazard analysis in offshore oil and gas projects with
development areas of over 1,000 km2; Strasser et al. (2011) presented a
landslide susceptibility map for the whole of Lake Lucerne (114 km2). In
all these examples the slope stability models were treated determinis-
tically, using best estimates and/or worst-case scenarios, as relevant.
Nevertheless, it is desirable to move form deterministic to probabilistic
susceptibility assessments, as they offer a more consistent framework to
express the effect of inevitable input uncertainties in the results.
Probabilistic assessment is also consistent with the needs of tsunami
hazard studies (Pampell-Manis et al., 2016; Grezio et al., 2017). Pre-
cedent probabilistic approaches using infinite slope models include
Carlton et al. (2017) and Puzrin et al. (2017) who mapped landslide
hazards for areas not larger than a few hundred km2 in the Lofoten

Islands and Caspian Sea respectively. Puzrin et al. (2017) used a more
complex model incorporating the concept of shear band propagation in
the analysis.

The challenge addressed here is to extend that previous work to the
much larger areas involved in regional mapping. For this purpose, the
SW Iberian margin has the advantage of counting with relatively good
databases of both potential earthquake sources and observed submarine
landslides. On the other hand, the geotechnical information currently
available for the region is rather sparse, as is often the case in most
marine studies. This limitation is addressed here, for the first time in
mapping landslide susceptibility in the offshore environment, using a
Bayesian methodology to combine the existing regional information
and that given by worldwide-sourced databases. Bayesian methods are
useful because they allow a systematic treatment of uncertainties and
they can easily incorporate newly obtained information. These ad-
vantages are now widely recognized, both in the field of geotechnical
characterization (Wang et al., 2016) and in that of tsunami hazard
studies (Grezio et al., 2017).

2. Geological setting

The SW Iberian continental margin is characterized by the interplay
of complex tectonic activity between the Iberian and African plates.
Seismicity is characterized by shallow to deep earthquakes of low to
moderate magnitude (Mw < 5.5) (Buforn et al., 1995, 2004; Stich et al.,
2005; Stich et al., 2007; Stich et al., 2010), but also includes the largest
and most destructive earthquakes in Western Europe (1531 CE, 1722,
1755 and 1969) (Fukao, 1973). The 1755 Lisbon Earthquake (estimated
Mw > 8.5) destroyed the city (intensity X-XI MSK) and was accom-
panied by tsunamis that devastated the SW Iberian and NW African
coasts (Baptista et al., 1998; Baptista and Miranda, 2009). Wide angle
seismic data shows that most seismicity is due to onset of subduction
west of the Gulf of Cadiz Imbricated wedge (Martínez-Loriente et al.,
2014). Active fault structures there correspond to NE-SW trending west-
verging folds and thrust faults (Gràcia et al., 2003; Zitellini et al., 2004;
Terrinha et al., 2009). In addition, long WNW-ESE dextral strike-slip
faults are also present (Zitellini et al., 2009; Terrinha et al., 2009;
Bartolome et al., 2012; Hensen et al., 2015).

Submarine landslides are also ubiquitous in Gulf of Cadiz (Urgeles
and Camerlenghi, 2013). Infrequent large volume events are capable of
tsunami generation (Lo Iacono et al., 2012). In the Gulf of Cadiz
(Fig. 1), landslides and turbidites have been used as a proxy for off-fault

Fig. 1. Study area with bathymetric information (EMODnet Bathymetry Consortium, 2018), location of sites with geotechnical data (Table 1), surface trace of faults
(Basili et al., 2013) and catalogued landslide areas.
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paleoseismic seismology. For instance, landslides such as the Marques
de Pombal slide and the North Gorringe debris avalanche (Vizcaino
et al.,2006; Lo Iacono et al., 2012), are associated to active faults and
were likely seismically triggered.

3. Data sources

The SW Iberian margin covers an area of approximately
458,400 km2 from 33°0′ to 38.7°0′N and from 15.6°0′ to 6°0′ W, in-
cluding the coasts of Spain, Portugal and Morocco. Available data for
the area include a digital elevation model (DEM) (Fig. 1) constructed
from multibeam bathymetric data (spatial resolution 115x115 m) that
was collected in a total of 19 cruises from different European institu-
tions (Zitellini et al., 2009) and compiled as part of the EMODnet
bathymetry initiative (EMODnet Bathymetry Consortium, 2018).

The fault database used in this study is the European Database of
Seismogenic Faults (EDSF; Basili et al., 2013). This database includes
faults that are deemed to be capable of generating earthquakes of
magnitude equal to or larger than 5.5 Mw and contains fault plane
geometry information and a series of fault parameters such as strike,
dip, rake, slip and earthquake magnitude information. In this study, the
database was restricted to include only faults whose possible quake
epicenters are mostly located offshore. This criterion is in line with that
applied in the evaluation of probabilistic seismic hazard in the offshore
scenario for structures in Portugal (Costa et al., 2008; Sousa and
Oliveira, 1997).

A continuously updated landslide catalogue for the SW Iberian
margin is being compiled at the Institute of Marine Sciences (CSIC) of
Barcelona, systematically gathering previous data in the area (e.g.,
Baraza et al., 1999; Pajarón et al., 2015; Gràcia and Lo Iacono, 2008;
Leon and Somoza, 2011; Mulder et al., 2009; Hanquiez et al., 2007). An
earlier version of this catalogue is presented in Urgeles and
Camerlenghi (2013). The landslide inventory includes information on
typology, area, volume, thickness and depth of failure initiation.

Geotechnical data for the SW Iberian margin was gathered from
different sources. Site location, water depth, and type of measurements
are listed in Table 1; referenced locations are reported in Fig. 1.

4. Methodology

4.1. Overview

A dedicated GIS project was built for this study. Bathymetric data
from the Gulf of Cadiz as well as information on submarine landslides,
faults and geotechnical properties from the various databases were all
imported into it. Operations within the GIS project are implemented
using Python scripts with all input and output based on grid cells that
represent 1 km x 1 km. Grid resolution was selected as a compromise
amongst physical relevance, computational efficiency and possible loss
of information due to averaging (Rodriguez-Peces et al., 2011).

A Montecarlo procedure (MC) is employed to obtain probabilistic
landslide susceptibility maps using two different geotechnical slope
stability assessment models. Two key aspects of the Montecarlo method
are the selection of the stochastic inputs and the definition of prob-
ability density distributions for those inputs. In this work the stochastic
input variables selected are slope gradient (α), horizontal peak ground
acceleration (PGA) and two geotechnical variables (i.e. normalized
undrained shear strength Cumobilised

v0
and normalized soil unit weight ).

In the precedent,Cumobilised represents mobilized undrained shear
strength, σ′v0 effective vertical stress, γ, total soil unit weight and γ′
effective soil unit weight. All the stochastic inputs are represented
through density distributions that are different at each cell of the map.
From these individual cell distributions random samples of the sto-
chastic variables are drawn at each run.

To set up the individual cell distributions different procedures are

employed, because the nature of the uncertainties represented is also
different. The information available on slope gradient (i.e. bathymetric)
is exhaustive in its coverage, but affected by measurement error. The
probability distribution that accounts for this uncertainty can be set up
once and for all at each cell.

Local -i.e. cell- distributions of PGA represent uncertainties in
earthquake magnitude at the source and attenuation due to varying
distance to the source. Assuming that the source catalogue (the EDSF;
Basili et al., 2013) is also exhaustive, these effects can be computed and
a PGA distribution set up once and for all at each cell. Note that any
limitations of the source database (e.g. its completeness) add a layer of
uncertainty to the results, which is not explicitly represented in the
model.

When addressing the uncertainty in geotechnical parameters the
situation is different. Each 1 km2 cell may be thought of as representing
a “geotechnical site”. At that cell-size, inherent ground variability in a
site, even within the restricted soft soil classes assumed by the geo-
technical models, is always significant Dreyfus et al. (2013). That local
variability is what is directly represented by the parameter distributions
set up at each cell. However, this opens up the question of how to
choose the statistics of those local distributions, since the regional
geotechnical database is very sparse.

The answer given is to combine the available regional information
with that contained in global databases to set up a regional-scale dis-
tribution of plausible statistics to describe geotechnical site variability.
At each cell in the map any of these plausible geotechnical sites is
something that is assumed to be random. Therefore, two levels of
sampling are needed in each Montecarlo round to initialize geo-
technical model inputs. First, the statistics for the cell distributions are
selected or, in other words, a plausible “geotechnical site” is assigned to
each cell. Afterwards those local distributions are themselves sampled
to obtain parameter values.

Once cell input distributions are initialized (i.e., at each grid cell
density distributions of Cumobilised

v0
, , α, PGA are defined), they are

sampled at each simulation to obtain single values of slope gradient,
PGA, normalized sediment density and normalized undrained shear
strength (Fig. 2). Using these inputs two slope stability models are
computed at each cell in each run.

The first slope stability model represents seismic loading as a quasi-
static action, but with quasi-static coefficients calibrated using perma-
nent-displacement Newmark-type analyses (Rampello et al., 2010). The
Montecarlo output, at each grid cell, is a lognormal distributed pseudo-
static factor of safety FSp−stat.. The probability of failure Pf is simply
evaluated as the number of simulated FSp−stat lower than 1 over N si-
mulations. Fig. 2a summarizes the workflow for this model.

In the second approach, the outputs are seismically induced
Newmark displacements (Newmark, 1965), which are estimated using
regressions with seismic ground motion, slope and geotechnical char-
acteristics (Jibson, 2007). Direct application of the Newmark approach
is computationally demanding for large-area mapping purposes and
different indirect methods are used instead (Jibson, 2011). The Mon-
tecarlo output for each grid cell is a Newmark displacement probability
density function PDF (Dn), which is also fitted to a lognormal dis-
tribution. This distribution may be used to compute exceedance prob-
abilities for any chosen displacement Dn threshold (i.e. Pexceedance Dn).
Fig. 2b summarizes the workflow for this model.

4.2. Slope stability assessment models

4.2.1. Pseudo-static approach
The pseudo-static approach is frequently used for regional landslide

hazard mapping (Jibson, 2011). In this approach, an equivalent seismic
coefficient kh is introduced within a conventional limit equilibrium
analysis. The infinite slope stability model can be expressed as (Lee and
Edwards, 1986; Morgenstern, 1967):

S. Collico, et al. Marine Geology 429 (2020) 106296

3



Ta
bl
e
1

Su
m

m
ar

y
of

ge
ot

ec
hn

ic
al

da
ta

an
d

m
et

ho
do

lo
gy

of
ac

qu
is

iti
on

of
ge

ot
ec

hn
ic

al
da

ta
.

Ty
pe

of
da

ta
Si

te
Lo

ca
tio

n
Co

re
s

n°
of

da
ta

⁎⁎
W

at
er

an
d

su
bs

ur
fa

ce
de

pt
h

in
fo

rm
at

io
n

Li
th

ol
og

y
de

sc
ri

pt
io

n
M

ea
su

re
m

en
t

m
et

ho
do

lo
gy

C u ’ v
0

Co
nt

in
en

ta
lm

ar
gi

n
of

G
ul

fo
fC

ad
iz

.
Co
re
sl
oc
at
io
n:

fa
ile

d
up

pe
r

sl
op

e;
st

ab
le

up
pe

r
sl

op
e;

sh
el

fm
ud

-la
ye

r.
Le

e
an

d
Ba

ra
za

,1
99

9,
Fi

g.
1

37
11

8
Fr

om
30

m
to

80
0

m
w

at
er

de
pt

h
(c

or
es

up
to

25
0

cm
le

ng
th

fr
om

se
ab

ed
)

Th
in

up
pe

r
sa

nd
la

ye
r

ov
er

ly
in

g
a

gr
ay

is
h

ol
iv

e,
m

as
si

ve
m

ud
un

it
w

ith
bi

ot
ur

ba
tio

n
in

te
rl

ay
er

ed
by

si
lt

un
it

Va
ne

sh
ea

r
m

ea
su

re
m

en
ts

on
th

e
en

d
of

se
ct

io
ns

an
d

fo
r

so
m

e
sp

lit
co

re
s

at
10

-c
m

in
te

rv
al

s.

M
ar

qu
e s

de
Po

m
ba

ll
an

ds
lid

e.
Co
re
s
lo
ca
tio
n:

H
ea

d
sc

ar
p;

La
nd

sl
id

e
bo

dy
;M

os
t

di
st

al
lo

be
.

M
in

ni
ng

et
al

.,
20

06
,F

ig
.1

4
28

7
Fr

om
27

00
m

up
to

40
00

m
w

at
er

de
pt

h
(c

or
es

up
to

52
0

cm
le

ng
th

fr
om

se
ab

ed
)

M
os

tly
co

m
po

se
d

by
si

lt
an

d
cl

ay
co

nt
en

t
w

ith
sm

al
ls

an
d

fr
ac

tio
n.

Fa
ll

co
ne

pe
ne

tr
om

et
er

(W
yk

eh
am

Fa
rr

an
ce

W
F

21
60

0)
at

5-
cm

di
st

an
ce

.

IC
M

-2
01

8I
N

SI
G

H
T

cr
ui

se
Co
re
s
lo
ca
tio
n:

Lo
w

er
sl

op
e

(F
ig

.1
)

10
25

Fr
om

93
0

m
up

to
26

67
m

w
at

er
de

pt
h

(c
or

es
up

to
26

8
cm

le
ng

th
).

H
an

dh
el

d
va

ne
sh

ea
r

m
ea

su
re

m
en

ts

’
Co

nt
in

en
ta

lm
ar

gi
n

of
G

ul
fo

fC
ad

iz
.

Co
re
sl
oc
at
io
n:

Fa
ile

d
up

pe
rs

lo
pe

;S
ta

bl
e

up
pe

rs
lo

pe
;

Sh
el

fm
ud

-la
ye

r.
Le

e
an

d
Ba

ra
za

,1
99

9,
Fi

g.
1

7
14

Fr
om

30
m

to
80

0
m

w
at

er
de

pt
h

(c
or

es
up

to
25

0
cm

le
ng

th
fr

om
se

ab
ed

)

D
er

iv
ed

fr
om

w
at

er
co

nt
en

t

M
ar

qu
es

de
Po

m
ba

ll
an

ds
lid

e.
Co
re
s
lo
ca
tio
n:

H
ea

d
sc

ar
p;

La
nd

sl
id

e
bo

dy
;

M
os

t
di

st
al

lo
be

.
M

in
ni

ng
et

al
.,

20
06

,F
ig

.1

4
17

4
Fr

om
27

00
m

up
to

40
00

m
w

at
er

de
pt

h
(c

or
es

up
to

52
0

cm
le

ng
th

fr
om

se
ab

ed
)

Q
ua

nt
ac

hr
om

e
pe

nt
ap

yc
no

m
et

er
on

5
cm

3

sa
m

pl
es

.

Ex
pe

di
tio

n
33

9:
G

ul
fo

fC
ad

iz
-W

Ib
er

ia
n

m
ar

gi
n

(S
to

w
et

al
.,

20
13

).
U

13
85

(F
ig

.1
)

Bo
re
ho
le
lo
ca
tio
n:

SW
Ib

er
ia

n
m

ar
gi

n
67

60
U

p
to

15
0

m
bs

f⁎
U

ni
fo

rm
lit

ho
lo

gy
co

m
po

se
d

m
os

tly
by

bi
ot

ur
ba

te
d

ca
lc

ar
eo

us
m

ud
s

an
d

ca
lc

ar
eo

us
cl

ay
s

W
at

er
co

nt
en

t
m

ea
su

re
m

en
ts

on
co

re
sp

ec
im

en
s

of
8

cm
3 .V

ol
um

e
of

sp
ec

im
en

s
m

ea
su

re
d

by
ga

s
py

cn
om

et
ry

.
U

13
86

(F
ig

.1
)

Bo
re
ho
le
lo
ca
tio
n:

Co
nt

in
en

ta
lm

ar
gi

n
of

G
ul

fo
fC

ad
iz

:m
id

dl
e

sl
op

e
~

25
km

so
ut

h-
so

ut
he

as
to

ft
he

Po
rt

ug
ue

se
ci

ty
of

Fa
ro

.M
id

dl
e-

sl
op

e
co

nt
ou

ri
te

de
po

si
ts

18
19

7
U

p
to

58
6

m
bs

f⁎
N

an
no

fo
ss

il
m

ud
,c

al
ca

re
ou

ss
ilt

y
m

ud
,a

nd
si

lty
bi

oc
la

st
ic

sa
nd

lit
ho

lo
gi

es

U
13

87
(F

ig
.1

)
Bo
re
ho
le
lo
ca
tio
n:

Co
nt

in
en

ta
lm

ar
gi

n
of

G
ul

fo
fC

ad
iz

:m
id

dl
e

sl
op

e,
co

m
pa

ni
on

to
Si

te
U

13
86

86
27

5
U

p
to

87
0

m
bs

f⁎
N

an
no

fo
ss

il
m

ud
,c

al
ca

re
ou

ss
ilt

y
m

ud
,a

nd
si

lty
bi

oc
la

st
ic

sa
nd

lit
ho

lo
gi

es
ge

ne
ra

lly
or

ga
ni

ze
d

as
bi

-g
ra

da
tio

na
ls

eq
ue

nc
es

.

U
13

88
Bo
re
ho
le
Lo
ca
tio
n:

Th
is

si
te

is
th

e
si

te
cl

os
es

t
to

th
e

St
ra

it
of

G
ib

ra
lta

r
ga

te
w

ay
.

24
47

U
p

to
15

50
m

bs
f⁎

St
ro

ng
ly

he
te

ro
ge

no
us

m
ed

ia
m

os
tly

co
m

po
se

d
by

si
lty

m
ud

,
ca

lc
ar

eo
us

cl
ay

,s
an

d,
si

lty
sa

nd
.

U
13

89
Bo
re
ho
le
lo
ca
tio
n:

~
90

km
w

es
to

ft
he

Sp
an

is
h

ci
ty

of
Cá

di
z.

Si
te

in
th

e
“c

ha
nn

el
s

an
d

ri
dg

es
”

se
ct

or
of

Ca
di

z
m

ar
gi

n.

10
7

27
8

U
p

to
99

0
m

bs
f⁎

Ca
lc

ar
eo

us
m

ud
,s

ilt
y

m
ud

,s
an

dy
m

ud
,a

nd
si

lty
bi

oc
la

st
ic

sa
nd

lit
ho

lo
gi

es
.

U
13

90
Bo
re
ho
le
lo
ca
tio
n:

Se
co

nd
of

tw
o

si
te

sd
ri

lle
d

in
th

e
ch

an
ne

ls
an

d
ri

dg
es

se
ct

or
of

Ca
di

z
m

ar
gi

n.

38
12

1
U

p
to

35
0

m
bs

f⁎
Ca

lc
ar

eo
us

m
ud

,s
ilt

y
m

ud
,s

an
dy

m
ud

,a
nd

si
lty

bi
oc

la
st

ic
sa

nd
lit

ho
lo

gi
es

U
13

91
Bo
re
ho
le
lo
ca
tio
n:

50
km

no
rt

hw
es

to
fC

ap
e

Sã
o

Vi
ce

nt
e,

ge
nt

ly
in

cl
in

ed
m

id
dl

e-
sl

op
e

re
gi

on
.

56
18

8
U

p
to

67
2

m
bs

f⁎
Ca

lc
ar

eo
us

m
ud

w
ith

m
in

or
lit

ho
lo

gi
es

in
cl

ud
in

g
si

lty
m

ud
,

sa
nd

y
m

ud
,n

an
no

fo
ss

il
m

ud
,a

nd
bi

os
ili

ce
ou

s
m

ud
cl

ay
ey

fo
ra

m
in

ife
ra

ln
an

no
fo

ss
il

oo
ze

.

To
ta

l
54

47
m

To
ta

l
11

66
D

SD
P

Le
g

79
–5

46
,7

9–
54

5:
H

in
z

et
al

.,
19

84
,F

ig
.1

60
76

Cl
ay

ey
fo

ra
m

in
ife

ra
ln

an
no

fo
ss

il
oo

ze
.F

ir
m

cl
ay

ey
fo

ra
m

in
ife

ra
ln

an
no

fo
ss

il
oo

ze
.G

re
en

na
nn

of
os

si
lc

la
ys

to
ne

.
G

ra
yi

sh
re

d
sa

nd
y

m
ud

st
on

e
an

d
m

ud
dy

sa
nd

st
on

e,
pe

bb
ly

at
ba

se
.

G
RA

PE
(G

am
m

a
Ra

y
A

tt
en

ua
tio

n
Po

ro
si

ty
Ev

al
ua

tio
n)

(c
on
tin
ue
d
on

ne
xt
pa
ge

)

S. Collico, et al. Marine Geology 429 (2020) 106296

4



=
+

FS Cu

z sin cos k cos
p stat

h
2

(1)

with:
α: slope gradient;

:Cu
z normalized undrained shear strength.
: normalized sediment unit weight;

kh: horizontal acceleration coefficient.
The horizontal acceleration coefficient is obtained as:

=k PGA·h (2)

where the coefficient η is applied to obtain a performance-based value
of kh.

Values of η coefficients used here are taken form the work of
Rampello et al. (2010). Following a well-established methodology (Bray
and Rathje, 1998; Stewart et al., 2003), Rampello et al. (2010) provided
a suite of η values by correlation with the output of stochastic perma-
nent-displacement Newmark type analyses. Different η values are ob-
tained for different levels of Newmark displacement Dn values and for
different site conditions. In this work the η values used are those as-
sociated to 15 cm permanent Newmark displacement for subsoil con-
ditions described as loose-to-medium cohesionless soil and/or soft-to-
firm cohesive soil (see Bisch et al., 2012). Newmark displacement va-
lues are used as indicative thresholds at which slope failure might occur
(Jibson et al., 2000). Table 2 shows that resulting η values are slightly
dependent on PGA values. All Newmark analyses in Rampello et al.
(2010) used an Italian strong-motion database (Scassera et al., 2009)
resulting from records generated by shallow crustal earthquakes with
Mw > 3.7. Lacking more specific studies for the SW Iberian margin, η
values derived from the Italian database were considered as appropriate
for the SW Iberian margin.

4.2.2. Displacement-based approach
In the Newmark method the slide mass is represented as a rigid

block (Newmark, 1965). In absence of inertial forces, the stability of the
block is given by the static factor of safety FSstat, here computed as:

=FS Cu
z sin cos

;stat (3)

with Cu
z

and α previously described in eq. 2. Due to the seismic shaking,
the critical acceleration, defined as the one that allows the block to
glide (i.e., FSp−stat = 1 in eq. 2) is then expressed as:

=a FS g( 1) tan( ) ;c stat (4)

Given an earthquake acceleration time history, values in excess of ac
are applied to the failing mass. Two integrations of the filtered accel-
eration history results in a cumulative permanent displacement of the
sliding block relative to its base. The method used here (Jibson, 2007)
evaluates Newmark displacements from correlation with a ratio be-
tween the critical acceleration of eq. 4 and PGA:

= +log a
PGA

a
PGA

0.215 log 1D
c c

D
2.341 1.438

log( )n n (5)

where:
Dn: Newmark permanent displacement [cm];
ac:critical acceleration in g;
εlog(Dn): model uncertainty, given by a normal distribution N (0, σlog

(Dn)), with a standard deviation σlog(Dn)= ± 0.51;
PGA: horizontal peak ground acceleration in g ’ s, which accounts

for soft sediments ground motion amplification effects.Ta
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Fig. 2. a) Flow chart for pseudo-static slope stability probability model. b) Flow chart for displacement-based slope stability probability model.
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4.3. Treatment of model input uncertainties

4.3.1. Slope angle
Implicit in any DEM there is measurement error that propagates into

slope angle uncertainty. Each multibeam system from which the DEM
was obtained will introduce a slightly different error depending mostly
on factors such as water depth, beam angle, bottom type and sea bottom
geomorphology. As a consequence, the error in depth measurements
would vary within a range of 0.04% to 0.15% for shallow water systems
and from 0.2% to 0.5% for medium to deep water systems. A simplified
approach has been taken in this study, and an average error value of
0.25% of the water depth is assumed throughout the DEM. Following
Mudron et al. (2013), evaluation of the slope uncertainty in a DEM is
quantified through a separate Montecarlo procedure (Fig. 3a). As-
suming a normal distribution for the DEM error, with 0 mean and
standard deviation σεDEM equal to 0.25% of the water depth, a randomly
perturbed DEM is generated for each Montecarlo run (see example in
Fig. 3b). The corresponding slope field is then evaluated using the
3 × 3 cell method as implemented in ArcGIS. After N simulations, a
normally distributed slope angle is obtained for each cell. Convergence
in slope statistics was observed after N = 130 simulations.

4.3.2. Horizontal peak ground acceleration
PGA values are usually derived from ground motion attenuation

relationships, i.e. empirical correlations between maximum ground
acceleration observed during an earthquake event at a given location
and earthquake magnitude. The significant influence of magnitude in
attenuation relationships is well recognized (Bommer et al., 2007). In
particular, equations derived from large-magnitude events should not
be extrapolated for prediction of ground motion from smaller events
and vice versa. Mezcua et al., (2008) presented an attenuation re-
lationship for the Iberian Peninsula, but cautioned against their use for

the Gulf of Cadiz, as it was largely based in smaller magnitude events
compared to those expected there. In the Gulf of Cadiz, shallow crustal
earthquakes associated to Mw greater than 5 are frequently recorded.
For this reason, the PGA is evaluated using a more general approach
proposed by Ambraseys et al. (2005), derived using Europe and Middle
East large-magnitude events (Mw > 5). For soft soils this correlation
reduces to:

= + + +
+ +

PGA M M d
F F F

log( ) 2.6595 0.142 ( 3.184 0.314 ) log 7.6
0.084 0.062 0.044

w w

N T O T

2 2

(6)

where:
log(PGA): logarithm of the horizontal peak ground acceleration

[ms−2];
Mw: moment magnitude;
d: Joyner-Boore distance [km] (i.e. distance to the surface projection

of the fault);
FN=1 for normal faulting, 0 otherwise;
FT=1 for thrust faulting, 0 otherwise;
FO= 1 for other styles of faulting, 0 otherwise.
εT: transformation uncertainty, modeled as ̴ N (0, σlog(PGA));
σlog(PGA)= +Mw Mw(0.665 0.065 ) (0.222 0.022 )2 2

;

This relation introduces a small dependency on fault mechanism
that is taken into account in our determination of the PGA, as the EDSF
(Basili et al., 2013) includes such information for all faults. The coef-
ficients to the terms FN, FT and FO, imply that thrust faults will provide
the most intense shaking compared to normal and strike-slip faults
given an earthquake of the same magnitude (Mw) and at the same
distance from the fault. The uncertainty introduced is clearly dependent
on the Mw. For a magnitude range between 5.8 and 7.6, as for the case
study, the uncertainty in ground motion prediction falls in the interval
0.31–0.18. The PGA for events in the upper range is therefore de-
termined with somewhat higher accuracy.

For each fault, the catalogue provides 10 different estimates of
maximum earthquake Mw derived from different correlations. In the
EDS catalogue all these estimates are computed assuming full-length
fault activation. The seismic events considered in this study as landslide
triggers would then all be associated with relatively large return per-
iods. Considering such long return periods is also justified by the sub-
marine landslide catalogue used to validate the analysis. Even if the
date of the events in this catalogue is not always well constrained, their
position in the uppermost sedimentary sequences indicates that they
are all Quaternary.

Table 2
η values associated with 15 cm permanent displacements in soft-medium soils
for different expected Horizontal Peak Ground Accelerations (Rampello et al.,
2010).

Horizontal Peak Ground Acceleration (PGA) [g] η

0.3–0.4 0.22
0.2–0.3 0.22
0.1–0.2 0.25
≤0.1 0.17

Fig. 3. a) Flow chart for slope uncertainty quantification, adapted from Mudron et al.,2013. b) Random DEM perturbation for ξ ̴ N (0,0.25% water depth). Axes show
degrees latitude and longitude.
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For each fault, the probabilistic description of Mw is given by a
uniform distribution covering the entire range of estimates. As a result,
uncertainty associated to the PGA at a site is given by the combination
of that in the Ambraseys et al. (2005) correlation and that of the Mw.

Again, a separate Montecarlo procedure is employed to build a
lognormal distribution of PGA values at each map cell. The main steps
in the procedure are depicted in Fig. 4. At each simulation a random
seismic source is activated. For such fault a random value of Mw is
sampled from its uniform probability distribution to evaluate a PGA
according to eq. 6 at all grid cells. The distribution statistics stabilizes
after some 400 runs.

.

4.3.3. Geotechnical properties
The geotechnical information available for the study area is scarce.

Some preliminary screening is possible: areas in which rock outcrops
have been clearly identified (e.g. seamounts) are excluded from the
analysis (Fig. 1). These areas appear as white spots in the maps (e.g.
Fig. 3b). In addition to this, we assume that soft relatively fine sedi-
ments prevail, such that an undrained response to earthquake loading is
plausible.

Given the large area (1 km2) represented by each model cell, it is
realistic to treat those as if they were different geotechnical sites. This,
in turn, makes useful a conceptual scheme proposed by Zhang et al.
(2004) in which the overall spatial inherent variability of geotechnical
parameters is decomposed into within-site variability and cross-site
variability. Within-site variability is embedded in the statistical

distribution assigned to a particular geotechnical parameter in a cell.
Cross-site variability is represented by the variability of statistical
parameters describing different local (i.e. cell-based) distributions.

For each of the geotechnical parameters involved XD (i.e. sediment
unit weight or normalized undrained shear strength) lognormal dis-
tributions at each cell are used to represent within-site variability. The
first step in each Montecarlo run (see Fig. 2) is, then, to set up these
distributions at each cell, i.e. to randomly assign a “site” to every cell in
the model. To do so, statistical distributions of means and variances for
the different geotechnical properties are sampled. Such statistical dis-
tributions of means and variances (i.e. of statistics) are themselves
described as lognormal random variables.

The available data from the site investigations in the area (Table 1)
provide a starting point to evaluate the density distributions for dif-
ferent geotechnical parameter statistics. However, given their non-
uniform spatial distribution and reduced overall number, direct extra-
polation to the whole area seems unwarranted. To circumvent this
problem, a Bayesian framework is adopted to integrate this regional
information with more general soil parameter information –i.e., a
worldwide sourced database.

In the scheme adopted, information from the global databases is
used to set up prior distributions for statistics of geotechnical para-
meters. Making use of Bayes' rule such prior information is then in-
tegrated with the SW Iberian margin regional data (i.e. Data) to obtain
updated probability density functions (i.e. posterior distribution) of the
relevant statistics, − the mean and standard deviations for the local
distributions of geotechnical parameters. Following Straub and
Papaioannou (2015), Bayes' rule for a generic random variable X is
expressed as:

=f x aL x f x( ) ( ) ( ) (7)

where:
f′(x) is the Prior probability density function for X.
f′′(x) is the Posterior or updated probability density function for X,

taking into account the Data.
L(x) is the likelihood or conditional probability of observing the

Data when X = x,

Fig. 4. Flow chart for PDF(PGA) and PDF(Ia) estimation.

Table 3
Statistical inputs to the Bayesian updating procedure of geotechnical parameters.

σεμT

Error due to transformation of sediment strength from fall cone to vane test
σεμ Tw

Weighted error
(eq. 11)

Prior μ Range μ Prior σμ Range σμ

μγ/γ′ – – Uniform [5.2–1.95] Uniform [0.4–0.1]
μCu/σ′v0 0.0086 0.0048 Uniform [1.45–0.1] Uniform [0.3–0.01]

σεσT σεσT_w
Prior μσ Range μσ Prior σσ Range σσ

σγ/γ′ – – Uniform [0.75–0.02] Uniform [0.12–0.02]
σCu/σ′v0 0.4 0.22 Uniform [1.75–0.1] Uniform [0.4–0.01]

Fig. 5. Example of ROC curve for landslide susceptibility model.
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=a
L x f x dx

1
( ) ( )

is a normalizing constant;
In this application, the random variables X are the statistics (mean

and standard deviation) of the geotechnical parameters. The two geo-
technical parameters used in the models, normalized sediment unit
weight and undrained shear strength, are considered mutually in-
dependent. The likelihood function can be expressed as:

= =
=

L x P Data( ) ( | µ , )
1

2 ·
exp 1

2
·

µ
X X

i

Ns

X

i X

X1

2

(8)

with:
ξi= statistics from geotechnical data (i.e. logarithms of mean or

standard deviations obtained at each regional site), computed from data
reported in Table 1;

Ns: number of regional sites considered in the updating operation;
μX: logarithm of a possible mean for the variable X;
σX: logarithm of a possible standard deviation value for the variable

X;
The Bayesian updating scheme is computed numerically. This is

done using a Markov Chain Montecarlo (MCMC) method, using a
Metropolis-Hasting algorithm implemented through a dedicated
MATLAB script. The Montecarlo method is used to obtain a probability

distribution for the target parameter, sampling the prior distribution.
To guarantee statistical robustness, this Montecarlo computation is re-
peated in sequence, setting up a Markov chain in which the posterior of

Fig. 6. Normalized sediment unit weight data from the Gulf of Cadiz (a) his-
tograms. (b) Adjusted PDFs.

Fig. 7. Histogram and prior distributions of normalized unit weight derived
from the clay-offshore database plotted alongside the SW Iberian margin site
data and deduced likelihood function for (a) the mean values and (b) the
standard deviations.

Fig. 8. Liquid Limit-Plasticity Index (LL-PI) for the global dataset and Cadiz;
Lee and Baraza,(1999).
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the previous step is taken as new prior. See Wang and Cao (2013) for a
detailed explanation of MCMC in a geotechnical context.

The computation of statistics at each site needs to account for dif-
ferent techniques used during data acquisition. In some cases, an em-
pirical correlation was applied to transform the originally acquired data
to a different strength measure (i.e. from fall cone test to vane shear
strength). Such process adds a transformation error to the strength es-
timate. In such cases the original variability of a given dataset, re-
presented by its standard deviation, σξ0, is increased by that of the
transformation error, σεT, to give (Phoon and Kulhawy, 1999a):

= + T0
2 2

(9)

The transformation error only affects part of the relevant collection
of regional datasets. Therefore, a weighted average approach was used
to account for this in the likelihood function:

= + _X X T w0
2 2

= N
N

_T w
T

tot
T (10)

with Ntot number of relevant data, and NT number of data affected also
by the transformation error.

4.3.3.1. Normalized sediment unit weight. Regional sediment density

Fig. 9. a) Original slope gradient map. b) Slope RMSE map. Axes show degrees latitude and longitude. Black and white pixels represent rock outcrops.
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measurements are obtained from deep IODP boreholes (Table 1), as
well as from short core data from other sources. Data obtained in the
IODP boreholes at depths below 350 m.b.s.f. was excluded, because that
is the maximum excavation depth of landslides in the catalogue. Fig. 6a
presents histograms of normalized sediment unit weight data from all
available cruises that collected geotechnical data in the area. The values
indicate significant variability within a range of 2 to 3.2, (equivalent to
14.55 ≤ γbulk [kN/m3]≤20). Fig. 6b presents adjusted lognormal
distributions to the different datasets. From these adjusted curves a
population of means and variances of site normalized unit weight is
obtained. Normalized sediment unit weight (i.e. ) was determined
using a variety of methods (Table 1). However, we missed specific
information on the statistics of conversion rules between the different
methods employed to derive soil unit weight measurements, so they all
were deemed equivalent and, as indicated in Table 3, no transformation
was applied.

Mayne (2014) collected a global database of soil unit weights con-
taining 1049 values representative of 88 sites with different soil types.
Amongst those, sites representative of soft clays, offshore soft clays,
offshore firm clays and offshore stiff clays were selected to build a new
dataset (i.e., clay-offshore dataset), to be used as Prior Information in
the Bayesian updating procedure. For each site in that restricted clay-
offshore dataset the mean and variance of bulk density was estimated.
Histograms of the means and variances thus obtained are depicted in
Fig. 7a. The mean values in the clay-offshore dataset lie mostly in the
range [1.9–3.97], except for some outliers. Considering now the stan-
dard deviations (Fig. 7b), it appears that within-site variability for the
clay-offshore dataset lies generally below 0.4, with only a few outliers
having larger values.

The offshore-clay normalized unit weight statistics are fitted with
uniform prior distributions, illustrated in Fig. 7. It was decided to use
the uniform distribution as Prior as it represents a less strong

Fig. 10. a) Local mean maximum PGA expected values assuming that the fault activates at full-length. b) Local PGA estimated variability.
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(uninformative) assumption (Table 3). Maximum and minimum values
of statistics adopted in the uniform distribution are reported in Table 3.
Regional data are also presented in Fig. 7 alongside a fitted lognormal
distribution that will be employed to compute likelihood in the Baye-
sian update scheme.

4.3.3.2. Normalized undrained shear strength. When considering
normalized undrained strength, the CLAY/10/7490 database (Ching
and Phoon, 2014) is used to define the prior knowledge. Relevance of
this prior knowledge was checked comparing regional data with the
global dataset in terms of Liquidity index (LI) and Plasticity index (PI)
(Fig. 8). This global database includes data from 251 sites. Normalized
Cuvane is considered herein as reference, since it closely corresponds to
the strength mobilized in slope failures (Mesri and Huvaj, 2007). The
range of statistics (mean and variance) of normalized Cuvane data from
the different case studies in the global database is used to define
uniform prior distributions for the Bayesian updating procedure (see
Table 3).

The regional undrained shear strength data from the SW Iberian
margin sites is also dominated by vane strength measurements (e.g. Lee
and Baraza, 1999). To consider also the fall cone measurements of
Minning et al., 2006, a transformation is necessary. An empirical cor-
relation for marine clays (Lu and Bryant, 1997) is used, namely

= +µ 0.275µCu Cu µvane fall cone T
(11)

where εμT
represents the transformation error of the regression. This

error is normally distributed with mean μεμT = 0 and σεμT = 0.0086.

4.4. Assessment of model performance

To quantify the model performance, the model outputs (probabil-
istic susceptibility maps) are compared with the observations (i.e. grid
cells with mapped landslide). Results of the comparison are expressed
by means of Receiver Operating Characteristic (ROC) curves (Begueria,
2006; Frattini et al., 2010). ROC curves (Fig. 5) visualize model per-
formance representing the True Positive fraction (TP) vs False positive
fraction (FP) for given cut-off values (e.g. specified probability of failure
value). TP is the proportion of positive cases correctly predicted by the
model, while FP is the proportion of false positive (unstable grid-cells
predicted as stable). Cut-off values are given by a certain probability of
failure – for the quasi-static model- and for a certain displacement value
– for the displacement-based approach. The area between the ROC
curve and the diagonal in the graph (Area Under the Curve or AUC)
gives a measure of potential discriminating power for the model, with
more powerful models resulting in larger areas. Since the landslide
catalogue used does not differentiate between source area and deposit
(mostly spread on flat areas), only reported landslide grid-cells with
slope angles greater than 3° are considered for model validation. This
left 4007 cells available for model evaluation.

5. Results

5.1. Slope gradient statistics

As previously described, the slope root mean square error (RMSE)
for each cell grid is a function of both water depth and slope angle
magnitude. For a fixed ratio of bathymetric measurement uncertainty,
the slope gradient error is inversely proportional to the magnitude of

Fig. 11. a) Scatter plot of generated equivalent sample μ ( ) . b) Updated PDF μ ( ). c) Scatter plot of generated equivalent sample σ ( ) . d) Updated PDF σ ( ).
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the slope angle. Therefore, steep slopes in shallow water are evaluated
with more accuracy than flat areas in deep water. Still, the absolute
magnitude of this derived uncertainty is rather small. A maximum error
of 1.28° is expected for flat areas, while in steep slopes the RMSE is
rarely above 0.15° (Fig. 9).

5.2. Peak ground acceleration

Seismogenic faults incorporated in the Montecarlo procedure are
labeled in Fig. 1. Fig. 10 reports the statistics (i.e. mean and variance) of
the local probability distribution functions of the aggregated maximum
PGA that these faults can deliver. The local mean μPGA is a function of
the relative distance of the faults to the particular cell. This implicitly
assumes a temporal dimension large enough so that all faults will be
active at one moment or another along their entire length. The faults
incorporated in the Basili et al. (2013) catalogue are all considered
active faults and therefore such assumption is reasonable. A maximum
mean value of 0.23 g is obtained for sites nearby the Horseshoe abyssal
plain (i.e. Horseshoe fault Fig. 1). Along the Portuguese margin values
between 0.15 and 0.13 g have been obtained. Such values are in
agreement with those available in the current seismic hazard zonation
for Portugal (Costa et al., 2008) for a similar seismic scenario and a
probability of exceedance of 10% in 50 years (i.e. 475 years return
period). The PGA variability, σPGA (Fig. 10b) is also greater in the
proximity of the Horseshoe fault.

5.3. Normalized sediment unit weight

A total of sixteen regional data groups were available from which
mean and variances of normalized unit weight distributions could be
extracted. For this purpose, the information from deep boreholes in the
Iberian margin (i.e., IODP Exp. 339 in Table 1) was split into seven
locations, as the boreholes were performed at large distances from one
another. As detailed in Table 4, the datasets from twelve sites were
selected for the updating operation, leaving 4 aside for validation.

Fig. 11 presents the Bayesian updating results for the assumed prior
uniform distributions of normalized unit weight statistics. The figures
present the Equivalent Samples generated during the MCMC run, as
well as the resulting updated distributions. Comparing likelihoods and
updated distributions it can be seen that the Bayesian approach has
been effective in reducing the spread of the distributions that will feed
site statistics to the map cells. The most relevant distribution values are
reported in Table 5. Finally, it may be noted that the validation data
points lie unambiguously within the bounds of the updated distribu-
tions.

5.4. Normalized undrained shear strength

As indicated in Table 4, nine regional site datasets, out of the thir-
teen used to evaluate ( )µ

v
Cuvane

0
and ( )v

Cuvane
0

, were used as input to the

Bayesian updating procedure and four were reserved for validation.
Results in terms of updated PDF ( ( )µ

v
Cuvane

0
) and updated PDF ( ( )v

Cuvane
0

)

are presented in Fig. 12. The most relevant distribution values are re-
ported in Table 5. Concerning ( )µ

v
Cuvane

0
all the four validation data fall

within the 90% inter-percentile range of [0.19–0.79]. A 90% inter-
percentile range of [0.17–0.8] is derived instead for ( )v

Cuvane
0

, which

also includes the four-validation data. Statistics of the Updated PDFs are
reported in Table 5.

5.5. Landslide susceptibility map: pseudo-static approach

Having obtained the PDFs for all input parameters required by the
seismic slope stability calculation the Montecarlo procedure in Fig. 2a
was run. A total of 1000 simulations were performed to achieve a
failure probability precision of around 0.01 (Wang et al., 2011). The
local mean value of the pseudo-static factor of safety distribution is
obtained and reported in Fig. 13a. As expected, lower values of factor of
safety (i.e. slopes prone to failure) are associated to sites with high
values of predicted PGA and slope gradient. A minimum value of 0.4
appears in the most susceptible areas (nearby Cape Sao Vicente, Mar-
ques de Pombal fault and Gorringe bank fault), while FSp−stat > 20 are
obtained for flat areas offshore the Iberian margin. The precision of the
derived factor of safety is quantified by its local variability expressed in
terms of the square root of the variance of FSp−stat (Fig. 13b). The latter
is given by the combination of morphological, geotechnical and PGA
uncertainties.

A noteworthy result is that uncertainty in the FSp−stat. decreases for
low values of the FS. Therefore, unstable sites are quantified more
precisely than stable ones. This is in apparent contrast with PGA results
reported in Fig. 10, where higher uncertainties are associated to greater
PGA values. A plausible explanation for this result may be obtained
applying a first order second moment method (FOSM) derivation
(Baecher and Christian, 2005) to the slope stability (Eq. 1). The con-
tribution of seismic shaking to the overall FS uncertainty at each grid
cell can be expressed as:

=
+

Cu
z

1

sin cos k cos
cosFS

2

h
2

2
2

k
2

(kh) h

(12)

where:

Fig. 12. a) Updated PDF(µCuvane
v0

). b) Updated PDF( Cuvane
v0

).
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Cu
z
: local (i.e. grid cell dependent) mean value of the normalized

shear strength;
: local mean value of the normalized sediment unit weight;
: local mean value of slope angle;

kh : local mean value of the horizontal acceleration coefficient;
σkh

2: local variance of the horizontal acceleration coefficient.
The mean value of local acceleration appears in the quadratic ex-

pression in the denominator of (Eq. 12). This value will overcome the
effect of increased local variance σkh

2 with acceleration magnitudes and
result in a less uncertain prediction of the FS.

Similar observations apply to the probability of failure Pf, reported
in Fig. 13c alongside the inventory of submarine landslides in the SW
Iberian margin (blue outlines). Pf increases for steep slopes subject to
high PGA (nearby Cape Sao Vicente, Marques de Pombal fault and
Gorringe bank fault) with values up to 0.64, decreasing for rather gentle
gradients.

5.6. Landslide susceptibility map: displacement-based approach

The displacement-based susceptibility map is derived following the
steps reported in Fig. 2b, resulting, as previously explained, in log-
normal distributions of Dn at each grid-cell. The main output cell sta-
tistics are reported in Fig. 14a and Fig. 14b alongside the landslide
inventory (i.e. blue outlines). Predicted permanent displacement mean
values μDn range from 0 to 72 cm. Greater displacements are associated
to sites characterized by steep slope gradients and high values of ex-
pected PGA. The uncertainty associated to Dn estimates is quantified by
its standard deviation σDn at each cell (Fig. 14b). This uncertainty clo-
sely reflects that of the seismic ground motion (see Fig. 10b). The Dn
statistics may be employed to derive a probability of exceedance of a
chosen Dn threshold (i.e. Pexceedance [Dn]), computed as 1-CDF
(Dn−treshold). An example is illustrated in Fig. 14c, which reports the
probability of exceedance of a Dn equal to 5.2 cm. The significance of
this particular Dn value is best appreciated after considering the results
of the model validation in the next section.

5.7. Model validation

As described in section 4.4, model performance is analyzed through
the ROC curve. For the pseudo- static approach, the ROC curve is
computed for different Pf cut-off values. For the displacement-based
approach, a ROC curve is defined employing different Dn threshold
values. In both cases ROC curves are computed using a random subset
including 75% of the pixels catalogued as landslides (a raster layer
containing ones, pixels containing landslides, and zeros). The remaining
25% are reserved for validation.

Fig. 15 shows that a slightly better performance is achieved by the
pseudo-static approach. Indeed, the AUROC value (Area Under the
Receiver Operating Characteristic) for the quasi-static model is 0.96
whereas the one computed for the displacement-based approach is
0.935. When compared with results of other landslide susceptibility
mapping studies (e.g. Park et al., 2013; Goetz et al., 2015; Cantarino
et al., 2019) our values indicate good accuracy for the models employed
here. The ROC point that maximizes both specificity and sensitivity (i.e.
maximum distance from the trivial model) may be used to identify an
optimal threshold. An optimal point in the Pf equal to 0.22 is obtained
for the pseudo static approach, while for the displacement-based ana-
lysis, a Dn−treshold of 5.2 cm is obtained.

In the displacement-based analysis, the ROC curve can be also
parametrized using exceedance probabilities. Using Pexceedance [5.2cm] as
input, the optimal point is given by Pexceedance [5.2cm] equal to 0.135.

Therefore, Pf = 0.22and Pexceedance [7cm] = 0.135 may be used as model
output boundaries to classify susceptible and unsusceptible grid cells.
These criteria were checked using the landslide subset randomly se-
lected for validation. The results are summarized in Table 6. The quasi-
static model predicts correctly 92% of the cells in the validation subset
and the displacement-based method 82%.

6. Discussion

6.1. Limitations affecting the results

There are several strong assumptions inherent to the slope stability
models that are at the core of the methodology presented in this study.
From the geometrical viewpoint there is no clue in the model about the
lateral extent or volume of the sliding mass. From the material view-
point the models assume that the sliding mass is a soft sediment, nor-
mally consolidated, which would shear undrained when subject to
seismic shaking. The assumption of normally consolidated material may
not represent well the sediment strength and density profile in areas of
significant erosion such as submarine canyons. With regard to in-situ
stresses, it should be noted also that excess pore pressures induced by
rapid sedimentation are not considered. Although in most marine de-
posits it is correct to assume that conditions are hydrostatic (Lee and
Edwards, 1986), overpressure is possible in areas where the sedi-
mentation rates are relatively high (e.g., Urgeles et al., 2006; Llopart
et al., 2015). Alternatives to address these model limitations are out-
lined in section 6.3 below.

Other limitations to the results presented are inherent to the data-
bases employed. In particular, the magnitude estimates in the European
Database of Seismogenic Faults assume full-length fault dislocation.
This assumption implies relatively large return periods for the ground
shaking events. However, such long return periods are justified by the
submarine landslide catalogue that is used to validate the analysis, as
the date of the events in this catalogue is not well constrained in many
instances but, because of their position in the uppermost sedimentary
sequences, they can all be assumed to be Quaternary.

A strong limitation of the submarine landslide database employed is
that it does not distinguish between source area and deposit. Because
submarine landslides may travel long distances from the area that in-
itially failed (e.g., Elverhøi et al., 2000; De Blasio et al., 2004) a data-
base that identifies the landslide source area will be better adapted to
highlight the factors linked to the failure without the influence of the
landslide dynamics. The slope-angle based filtering criteria that has
been applied to get around this limitation is a relatively crude solution.

6.2. Model performance

Despite all the limitations signaled above overall model perfor-
mance, as measured by the AUROC curves, is noteworthy. This good
performance suggests that, within the limits of the employed databases,
seismic triggers are the dominant cause of submarine slope failure in
the SW Iberian margin.

The (slightly) better performance of the quasi-static model should
not come as a surprise. Both the quasi-static and the displacement-
based approach applied here are ultimately based on statistical re-
gressions of Newmark method outputs for a given set of input seismic
motions and slope descriptors. In the displacement-based method that
regression directly gives an estimated displacement, whereas in the
quasi-static method the regression is used to establish the mobilization
factor η. The statistical work of Rampello et al. (2010) is based on
seismic motion records from Italy, which from a tectonic viewpoint is a

Fig. 13. a) Mean estimates of Factor of safety. b) Uncertainty in Factor of safety estimation. c) Probability of failure map considering the η factor from Rampello et al.
(2010). Outlined in blue in figures (a) and (b) are the landslides in the SW Iberian margin inventory. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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reasonable proxy for the Gulf of Cadiz. The displacement-based model
performance might also be improved by using richer descriptions of
seismic ground motion, for instance using models that also include
Arias intensity within the predictor variables (Jibson, 2007).

The calibration of the quasi-static method using dynamic effects
affects the performance of the method. Fig. 16 shows the estimated
probability of failure using a non-calibrated reduction factor value
frequently used in practice (i.e., η=0.5). When compared with the ca-
librated method (Fig. 13c) the new results show a general increase in
slope failure susceptibility.

Model performance should be reevaluated in the future, as the
landslide catalogue is updated and becomes more precise. A particu-
larly significant improvement in this respect may be a landslide cata-
logue that distinguishes between landslide source and landslide de-
posits. By using the polygons of the landslide source areas only, we will
ensure that the input in the model performance and validation through
the ROC curves will not be contaminated by portions of the polygons

where the slope stressors, factor of safety and probability of failure are
not related to the slope failure conditions.

6.3. Enhancing the susceptibility maps

The susceptibility maps might be further enhanced if other con-
ditioning factors are included. An additional input factor that could be
considered is the occurrence of overpressure. In a first approximation
this may be explored using very similar models. For example, following
(Carlton et al., 2017) the pseudo-static slope stability model might be
reformulated as:

=
+

FS Cu

z sin cos k cos
r(1 )p stat

h
u

2
(13)

Fig. 14. a) Mean value of Newmark displacement. b) Square root of variance of Newmark displacement. c) Probability of exceedance a Dn threshold equal to 7 cm.
Outlined in blue are the landslides in the SW Iberian margin inventory. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 15. ROC curve and Optimal thresholds for Pseudo-static model and
Displacement-based method.

Fig. 16. Probability of failure map obtained using a naïve quasi-static slope stability model (η = 0.5).

Table 4
Regional datasets employed as input and validation for the Bayesian updating
procedure. SdG068-XX are measurements performed on samples collected in
2019 during the INSIGHT Leg-1 cruise. See Stow et al. (2013) for details of
IODP Exp. 339 Sites.

Variables Input data Validation data

’
µ Cu

v0
;

’
Cu

v0

9 4
Sites
- 4 sites Minning et al., 2006
- 3 sites, Lee and Baraza, 1999
- SdG068–02
- SdG068–03

SdG068–11
SdG068–14
SdG068–15
SdG068–16

( )’
µ ; ( )’

12 4
Sites
- IODP Exp. 339 U1385
- IODP Exp. 339 U1386
- IODP Exp. 339 U1387
- IODP Exp. 339 U1388
- IODP Exp. 339 U1389
- IODP Exp. 339 U1390
- IODP Exp. 339 U1391
- DSDP Leg 14–135
- DSDP Leg 14–79
- Minning et al., (2006)
- SdG068–02
- SdG068–03

SdG068–11
SdG068–14
SdG068–15
SdG068–16
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with:
ru= u

v0
being the excess pore pressure ratio.

The ru is a new variable that may be integrated in the spatial model
using a similar procedure to that applied here to the slope gradient and
PGA variables. A local (i.e. grid cell dependent) distribution of over-
pressure across SW the Iberian margin could be derived from spatially
distributed inputs such as sedimentation rate and/or sediment accu-
mulation over a reference horizon of known age. Correlations may be
established between sedimentation rate and maximum pore water
pressure at a cell, by exploiting systematic 1D simulations of sedi-
mentation and consolidation, with a parametric coverage relevant for
the SW Iberian margin. Uncertainties in hydromechanical parameters
(e.g., permeability and coefficient of consolidation) may be treated
using a similar Bayesian approach to that used here for undrained
strength or density. Consideration of non-uniform overpressure condi-
tions along the sedimentary sequence would be more realistic, but will
require a substantial modification of the stability model, implying at
least local vertical discretization (as done, for instance, in Strasser et al.,
2011). This extra dimension per grid cell will would add substantial
computational and data acquisition costs.

Similar considerations would apply if a variable overconsolidation
profile with depth is introduced. Overconsolidation could be considered
if the amount of erosion can be estimated and characterized by the
corresponding normalized strength ratios at each cell. Alternatively, it
could be possible to use non-linear strength profiles at each cell, but
that would typically require some numerical solution by limit equili-
brium or other method. This latter solution would strongly increase the
computational cost of the model. Both would also likely require better
geotechnical information than what is currently available.

6.4. From submarine landslide susceptibility to submarine landslide hazard

As noted in the introduction susceptibility maps onshore are fre-
quently conceived as steps towards hazard evaluation. Landslide gen-
erated tsunami is the more relevant hazard at the regional scale dis-
cussed here.

From a general viewpoint, landslide hazard (HL) can be expressed as
the conditional probability of landslide size (PLV), of landslide occur-
rence in an established period (PN) and of landslide spatial occurrence
(S) (Guzzetti et al., 2005). Assuming independence amongst the three
probabilities, the landslide hazard can therefore be expressed as:

= × ×H P P SL LV N (14)

For earthquake triggering the occurrence of landslides is directly
connected to the recurrence of seismic shaking. Gutenberg-Richter laws
have been proposed for several zones offshore Portugal for seismic
hazard studies in that country (Costa et al., 2008). These laws may be
easily coupled to the model to provide a starting point to evaluate
submarine landslide recurrence until better studies become available. A
more complex issue is that of landslide size. Regional magnitude-fre-
quency relations for submarines landslides (Urgeles and Camerlenghi,
2013) might be useful to constraint the parameters affecting the pre-
dicted hazard. It is also attractive to explore if the spatial coherence of
model outputs (i.e. the connectivity of failed cells for source events of
similar magnitude at given location) may be exploited to define an
aerial event size. Areal sizes thus estimated would require transfor-
mation into volumetric landslide characteristics making use of regional
correlations. Considering the spatial correlation structure of outputs
might, however, require more detailed consideration of spatial corre-
lations of geotechnical inputs. This can be facilitated by using a random
field approach (Fenton and Griffiths, 2008), which is already im-
plemented in the code.

7. Conclusion

This study, using the SW Iberian margin as an example, is the first
attempt to assess in a systematic probabilistic manner earthquake-in-
duced submarine landslide susceptibility for a large offshore region. A
grid cell-based methodology using infinite slope models is applied at
this regional-scale. While similar mapping efforts have been previously
presented, the area addressed here is orders of magnitude larger than
that of the precedents.

The expected seismic shaking across the study area is computed
assuming that faults dislocate their entire length, a constrain given by
the source database. Therefore, the seismic scenario considered is de-
fined by severe magnitude earthquakes implying long return periods.
Given the temporal scale of the landslide catalogue used for validation
of the method this appears as a valid assumption.

Despite the jump in scale introduced, well-established evaluation
methods for susceptibility maps suggest that the models employed
achieve good accuracy. It appears that most landslides included in the
database employed to validate the output were earthquake-triggered by
the faults collected in the source database. Naturally, this conclusion
should be revised and confirmed as both databases are enlarged and/or
improved.

The methodology employed has been deliberately developed to fa-
cilitate reevaluation, as the database of mapped landslides, the seismic
source catalogue or the regional geotechnical information is extended
and updated. The method can be also extended to include additional
contributing factors such as overpressure. Probabilistic susceptibility
maps like the ones presented here are one significant step towards
landslide -generated tsunami hazard estimation at the regional scale.
However, further work is still necessary to that end, particularly in
order to link spatial susceptibility and overall event magnitude.

Notation

The following symbols are used in this paper:
σεDEM standard deviation of DEM error
μlog(PGA) mean value of logarithm of PGA

Table 5
Summarized statistics of normalized geotechnical parameters after a Bayesian
procedure.

γ/γ’ Cu/σ′v0

μγ/γ’ σμγ/γ′ μCu/σ′v0 σμCu/σ′v0

Prior range [max-min] [5.2–1.95] [0.4–0.1] [1.45–0.1] [0.3–0.01]
Likelihood Estimate

Updated μXD
2.28
2.26

0.28
0.23

0.42
0.41

0.25
0.16

90% inter-percentile
updated

[2.83–1.81] [0.72–0.19]

Prior range [max-min] μσγ/γ′ σσγ/γ′ μσCu/σ′v0 σσCu/σ′v0
[0.75–0.02] [0.12–0.02] [1.75–0.1] [0.4–0.01]

Likelihood Estimate
Updated σXD

0.18
0.17

0.1
0.06

0.45
0.43

0.33
0.19

90% inter-percentile
updated

[0.32–0.06] [0.8–0.17]

Table 6
Percent of landslide-grid-cells predicted by the models.

Optimal thresholds % landslide grid-cell predicted Pseudo-static approach % landslide grid-cell predicted Displacement-based approach

Pf = 0.22 92% –
Pexceedance [Dn=5.2cm] = 0.135 – 82%
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σlog(PGA) standard deviation of logarithm of PGA
μPGA mean value of PGA
σPGA standard deviation of PGA
X statistics of interest (mean and standard deviation) modeled

as random variable
fX′(x) Prior probability density function for X
fX″(x) Posterior probability density function for X
L(x) Likelihood or conditional probability of observing the Data

when X = x,
μX logarithm of a possible mean for the variable X
σX logarithm of a possible standard deviation value for the

variable X
ξi i-th data on geotechnical statistics
ξ data vector on geotechnical statistics
σξ0

original standard deviation of ξ
εT transformation error due to regression used
σεT standard deviation of data statistics ξ due to transformation

error used
σx0

original standard deviation of the Likelihood L(x)
σεT_W

weighted standard deviation of data statistics ξ due to
transformation error used

εμT
transformation error of the predicted mean value

μεμT
mean value of εμT

σεμT
standard deviation of εμT

μCuvane mean value of undrained vane shear strength
μCufall−cone

mean value of undrained fall-cone strength
Ns number of regional sites considered in the updating operation
Ntot number of relevant data
NT number of data affected also by the transformation error
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